Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Luận văn thạc sĩ UEH construct credit scoring models using logistic regression, neural network and
Nội dung xem thử
Mô tả chi tiết
1
UNIVERSITY OF ECONOMICS
HO CHI MINH CITY
VIETNAM
INSTITUTE OF SOCIAL STUDIES
THE HAGUE
THE NETHERLANDS
VIETNAM – NETHERLANDS
PROGRAMME FOE M.A. IN DEVELOPMENT ECONOMICS
CONSTRUCT CREDIT SCORING MODELS USING
LOGISTIC REGRESSION, NEURAL NETWORK AND
THE HYBRID MODEL
BY
LE MINH TIEN
MASTER OF ARTS INDEVELOPMENT ECONOMICS
HO CHI MINH CITY, NOVEMBER 2015
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
2
UNIVERSITY OF ECONOMICS
HO CHI MINH CITY
VIETNAM
INSTITUTE OF SOCIAL STUDIES
THE HAGUE
THE NETHERLANDS
VIETNAM – NETHERLANDS
PROGRAMME FOE M.A. IN DEVELOPMENT ECONOMICS
CONSTRUCT CREDIT SCORING MODELS USING
LOGISTIC REGRESSION, NEURAL NETWORK AND
THE HYBRID MODEL
A thesis submitted in partial fulfilment of the requirements for the degree of
MASTER OF ARTS INDEVELOPMENT ECONOMICS
By
LE MINH TIEN
Academic Supervisor:
DR. PHAM DINH LONG
HO CHI MINH CITY, NOVEMBER 2015
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
3
Abstract
Viet Nam economy is facing many difficulties, the operation of enterprises is not effective
leading to the non performing loan ratio of Banks increases. In the period 2007 to 2014, Viet
Nam have seen a downtrend in credit growth from 53,89% in 2007 to 11,8% in 2014 without
signs of strong recovery in the next period. A decline of credit growth implies that enterprises are
facing difficult in approaching credit from lending institutions and those enterprises which
operate mainly base on credit will be strongest affected ones. Non performing loan ratio of
Banks in Viet Nam has increased in 2007 to 2014, from 2% in 2007 then reached 3,25% in 2014
(highest in 2012 at 4,08%). In this period, almost enterprises could not approach Banks’ loans
while Banks are afraid of non performing loan ratio increasing. However, Banks are competing
strongly with domestic and foreign ones to achieve shares and maintain profit at the current. Viet
Nam is known as a densely populated country (a market size of 90 million people and high
proportion of young people) which is considered as a potential retail market for Banks to expand
and develop in the next period. To increase the competitiveness of Banks and also improve
effective loan risk management, this study applied different methods that are common used to
build up credit scoring model such as logistic regression, neural network and hybrid model.
Credit scoring model is considered as an application which is developed and widely applied in
the sector of finance and banking in the last decades, it is useful in accelerating credit analysis
process of Banks. Final results confirmed that characteristics like age, education, marital status,
current living status, living time in the current place, type of job, working time in current job,
working time in current field, number of dependent people, historical payment have a
statistically significant effect on repayment capacity of a customer. Credit scoring models can
classify customers according to different strategic purposes of users. And the performance of
hybrid models seemed better and more reliable than separate ones.
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
4
Content
CHAPTER 1: INTRODUCTION................................................................................................ 8
CHAPTER 2: LITERATURE REVIEW ................................................................................. 11
2.1 The concept of credit scoring model: ..................................................................................... 11
2.2 Judgmental analysis method and credit scoring model: ......................................................... 12
2.3 Advantages and disadvantages of credit scoring models: ...................................................... 13
2.4 Historical development of credit scoring models: .................................................................. 14
2.4.1 Development in credit card and instant loan markets:...................................................................16
2.4.2 Development in mortgage markets: ...............................................................................................17
2.4.3 Development in consumer credit market: ......................................................................................18
2.5 Common variables in constructing credit scoring models:..................................................... 20
2.6 Common techniques employed in credit scoring models: ...................................................... 23
CHAPTER 3: METHODOLOGY ............................................................................................ 26
3.1 Data:........................................................................................................................................ 26
3.1.1 Variables:.......................................................................................................................................26
3.1.2 Assumptions:..................................................................................................................................28
3.2 Methodology:.......................................................................................................................... 30
3.3 Logistic regression:................................................................................................................. 31
3.3.1 Theory:...........................................................................................................................................31
3.3.2 Odds ratio:......................................................................................................................................31
3.3.3 Information value:..........................................................................................................................32
3.3.4 Quality of the model: .....................................................................................................................32
3.3.4.1 Log-likelihood ratio (LR) test:................................................................................................32
3.3.4.2 Pearson Chi-Square test: .........................................................................................................33
3.3.4.3 Akaike Information Criterion (AIC):......................................................................................33
3.4 Neural Network: ..................................................................................................................... 34
3.4.1 Theory:...........................................................................................................................................34
3.4.2 Components of artificial neural network: ......................................................................................34
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
5
3.4.3 Back Propagation Algorithm: ........................................................................................................37
3.5 The hybrid model:................................................................................................................... 38
3.6 Comparison of models:........................................................................................................... 38
CHAPTER 4: EMPIRICAL RESULTS................................................................................... 39
4.1 Data:........................................................................................................................................ 39
4.1.1 Dependent Variable: ......................................................................................................................39
4.1.2 Independent Variables: ..................................................................................................................40
4.2 Estimation results:................................................................................................................... 48
4.2.1 Construction of Logit models: .......................................................................................................49
4.2.1 Comparison of Logit models: .......................................................................................................50
4.2.1.1 Log-likelihood ratio (LR) test:................................................................................................50
4.2.1.2 Person Chi-square test:............................................................................................................51
4.2.1.3 Akaike Information Criterion (AIC):......................................................................................51
4.2.1.4 Classification tables: ...............................................................................................................52
4.2.1.5 Comparison summary: ............................................................................................................53
4.3 Neural network: ...................................................................................................................... 53
4.3.1 Measurement of Model performance:............................................................................................53
4.3.2 Importance of independent variables:............................................................................................54
4.4 Hybrid model:......................................................................................................................... 55
4.4.1 Hybrid model 1: .............................................................................................................................55
4.4.2 Hybrid model 2: .............................................................................................................................56
4.5 Summary comparison: ............................................................................................................ 57
CHAPTER 5: CONCLUSION .................................................................................................. 58
5.1 Research summary and implication:....................................................................................... 58
5.1.1 Research summary:........................................................................................................................58
5.1.2 Implication:....................................................................................................................................59
5.2 Limitations of the study:......................................................................................................... 60
References.................................................................................................................................... 62
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
6
List of tables
Table 01 Common variables in previous studies…………………………………………….23
Table 02 Common methods in previous studies.…………………………………………….26
Table 03 Variables and their definitions…………………………………………….……….27
Table 04 Summary of selected variables in logit models……………………………………50
Table 05 Log-likelihood ratio (LR) test…..…………………………………………………. 50
Table 06 Person Chi-square test result………………………………………………………51
Table 07 Akaike Information Criterion (AIC) result……………………………………….51
Table 08 Classification table of logit models………………………………………………... 51
Table 09 Summary logit model comparison…………………………………………………52
Table 10 Neural network model summary………………………………………………….. 53
Table 11 Classification of Neural network model…………………………………………...53
Table 12 Importance of independent variables of Neural network model………………...54
Table 13 Hybrid model 1 summary…………………………………………………………..55
Table 14 Classification of Hybrid model 1………………………………………………….. 55
Table 15 Hybrid model 2 summary…………………………………………………………..56
Table 16 Classification of Hybrid model 2………………………………………………….. 56
Table 17 Selected model summary…………………………………………………………... 57
Table 18 Correlation Matrix…….…………………………………………………………... 65
Table 19 Collinearity Test……….…………………………………………………………....66
Table 20 Results of logit model 1...…………………………………………………………...66
Table 21 Results of logit model 2...…………………………………………………………...67
Table 22 Results of logit model 3...…………………………………………………………...68
Table 23 Results of Neural network model………………………………………………..... 72
Table 24 Results of Hybrid model 1.……………………………………………………….... 74
Table 25 Results of Hybrid model 2….………………………………………………….…... 78
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
7
Table 26 Summary of Information value of variables ………...…………………………... 81
List of figures
Figure 01Viet Nam credit growth in 2006-2014…………………………………………… 09
Figure 02 Non performing loan ratio in 2006-2014……………………………………….. 10
Figure 03 Steps to construct Credit scoring model………………………………………… 30
Figure 04 Processing information in an Artificial Neuron………………………………… 34
Figure 05 Neural network with one hidden layer…………………………………………... 34
Figure 06 Example of Summation function………………………………………………… 35
Figure 07 Example of Sigmoid function of ANN…………………………………………… 36
Figure 08 Back propagation algorithm of single neuron………………………………….. 37
Figure 09 Ratio of good/bad customer of dataset………………………………………….. 40
Figure 10 Ratio of good/bad customer base on age of customer…………………………. 41
Figure 11 Ratio of good/bad customer base on Current living status……………………. 42
Figure 12 Ratio of good/bad customer base on Education level………………………….. 43
Figure 13 Ratio of good/bad customer base on Gender…………………………………… 44
Figure 14 Ratio of good/bad customer base on Marital status…………………………… 44
Figure 15 Ratio of good/bad customer base on Living time at current place…………… 45
Figure 16 Ratio of good/bad customer base on Type of job………………………….…… 45
Figure 17 Ratio of good/bad customer base on Working time in present job…………… 46
Figure 18 Ratio of good/bad customer base on Working time in current field….………. 47
Figure 19 Ratio of good/bad customer base on Number of dependent people…………… 48
Figure 20 Ratio of good/bad customer base on Historical payment ………...…………… 48
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com
8
CHAPTER 1: INTRODUCTION
In 2007, The Financial Crisis began from United States (US) by a decisive decline of home
prices, then affected entire the economy and spread through the world economy. A cut deep into
demand all over the world made Viet Nam economy facing many difficulties in export sector in
this time. Enterprises have to narrow down their operations result in the credit growth of the
banking system has slowed down in the recent period.
Figure 01: Viet Nam credit growth in 2006-2014
Source: The State Bank of Vietnam’s annual report 2006-2014.
Banks are afraid of losing their capital because of existing difficulties of the economy while the
sign of economic recovery is still very weak, thus they are careful in making their lending
decisions. Economists forecast this situation would still continue in the next few years. To
survive and develop in this period, some economists suggested that, in the coming period, the
retail banking segment will be the alternative strategy could help Banks developing their
businesses and maybe is the key growth because Viet Nam has a market size of 90 million
people (with a high proportion of young people) which will generate opportunities for Banks to
expand their services to help consumers increasing asset value and better businesses management
as well as carry out daily payment activities. Viet Nam with some typical characteristics of lowincome developing country such as dynamic young population, rising income and desire to
25,44%
53,89%
25,43%
37,53%
31,19%
12,00%
8,91%
12,51%
11,80%
-10%
0%
10%
20%
30%
40%
50%
60%
2006 2007 2008 2009 2010 2011 2012 2013 2014
Viet Nam credit growth in 2006-2014
LUAN VAN CHAT LUONG download : add luanvanchat@agmail.com