Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Ứng dụng phân tích dữ liệu lớn trong thương mại điện tử: góc nhìn từ phía doanh nghiệp và khách hàng
PREMIUM
Số trang
166
Kích thước
3.0 MB
Định dạng
PDF
Lượt xem
1433

Ứng dụng phân tích dữ liệu lớn trong thương mại điện tử: góc nhìn từ phía doanh nghiệp và khách hàng

Nội dung xem thử

Mô tả chi tiết

國立屏東科技大學熱帶農業暨國際合作系

Department of Tropical Agriculture and International Cooperation

National Pingtung University of Science and Technology

博士學位論文

Ph.D. Dissertation

以企業跟顧客的觀點來探討大數據分析對電子商務的衝擊

Applying Big Data Analytics in E-commerce: Aspects of

Business and Customer

指導教授 Advisor: 廖世義博士(Shu-Yi Liaw, Ph.D.)

研究生 Student: 黎氏梅 (Le Thi Mai)

中華民國 107 年 06 月 01 日

June 1, 2018

I

摘要

學號:P10322019

論文名稱:以企業跟顧客的觀點來探討大數據分析對電子商務的

衝擊

總頁數:151 頁

學校名稱:國立屏東科技大學 系(所)別:熱帶農業暨國際合作系

畢業時間及摘要別:106 學年度第 2 學期博士學位論文摘要

研究生:黎氏梅 指導教授:廖世義 博士

論文摘要內容:

大數據分析應用已經在許多已開發國家中被各產業領域應用著。這

種新的分析工具提高了專家和研究人員對商業價值和企業挑戰的使用動

機。然而,目前研究在這部分較為缺乏以商業視角下評估大數據分析應

用的研究。本研究主旨在(1)應用大數據分析時,對公司的意義、企

業特色、企業價值和企業挑戰進行文獻回顧;(2)探索並確定應用大

數據分析在電子商務上對消費者反應的利弊影響;(3)評估知覺價值

維度和知覺風險的中介效應;(4)確定信任傾向的調節效果。通過使

用社會科學統計軟體和線性結構分析軟體進行數據分析,樣本回收越南

349 名受訪者之有效樣本。本研究從企業和客戶兩個角度進行分析。本

研究結果如下:

(1)該研究綜合了多種大數據分析概念,為大數據分析在電子商務公

司的應用提供更深入的見解。值得強調的是近年來與電子商務相關的大

數據分析興趣增加。 大數據分析在電子商務中的應用可以分為創建透明

度、發現需求和提高績效、細分市場、更好的決策、新產品或商業模式

創新等五個方面。這些應用程序帶來了許多商業價值,但也會對其他想

要應用大數據分析的電子商務業者帶來一些挑戰。

II

(2)研究結果發現訊息搜索、推薦系統、動態定價和客戶服務對消費

者反應有不同顯著的影響,整體而言,訊息搜索對消費者意向及改變消

費者行為的影響最大,而動態定價、推薦系統和客戶服務也對消費者意

向有顯著的影響,但消費者行為卻會降低。而另一方便,隱私、安全、

購物成癮和群眾效應對消費者反應有不同顯著的負面影響。具體而言,

購物成癮與群眾效應、隱私及安全相比,購物成癮對消費者意向及行為

都有具大的影響。因此不可否認的是,消費者正同時接收正面及負面的

影響。

(3)研究結果證實,功能和情感價值是大數據分析的積極性與消費者

反應之間關係的重要中介變數。但功能價值的中介效果與情感價值並無

顯著差異。這是一個重大的發現,現在的消費者不僅可以找到自己喜歡

的產品或服務,還可以享受在網上購物的趣味性。因此,如何有效地運

用大數據分析來促發消費者的功能價值和情感價值,這是給電子商務業

者的一個方向。

(4)研究發現,知覺風險不會調節大數據分析的負面因素與消費者反

應之間的關係。此外,客戶的信任傾向可以緩解大數據分析的負面因素

與客戶反應之間的關係及消費者感知到的風險。高信任傾向的消費者比

低信任傾向的反應更強烈。由於消費者對大數據分析應用的信任,因此,

當負面因素和知覺風險上升時,很容易對消費者行為有負面影響。

本研究有助於在以企業角度和消費者角度下增進對大數據分析應用

的理解,這提供給電商業者發展永續的消費者市場之重要作用。電子商

務可以依靠大數據分析來提升消費者行為,但過度使用可能會有一些負

面的影響。除此之外,本研究對未來的後續研究建議,理論和實踐方面

的挑戰進行了更廣泛的討論。

關鍵字:電子商務、大數據分析、消費者行為、知覺價值、知覺風險、

信任傾向

III

ABSTRACT

Student ID: P10322019

Title of Dissertation: Applying Big Data Analytics in E-commerce: Aspects

of Business and Customer

Total Page: 151 pages

Name of Institute: Department of Tropical Agriculture and International

Cooperation, National Pingtung University of Science

and Technology

Graduate Date: June 1, 2018 Degree Conferred: Doctoral Degree

Name of Student: Le Thi Mai Advisor: Liaw, Shu-Yi, Ph.D.

The Contents of Abstract in This Dissertation:

The era of Big Data analytics (BDA) has begun in most industries within

developing and developed countries. This new analytics tool has raised

motivation for experts and researchers to study its impacts to business values

and challenges. However, there is shortage of studies which evaluate the

applications of BDA under business view and help to understand customers’

views towards the applications of Big Data analytic. This research aims to (1)

draw on a systematic review of the literature about definition, distinctive

characteristics, business values and challenges of a company when applying

Big Data analytics, (2) explore and determine the pros and cons of applying

Big Data analytics that affects customers’ responses in an e-commerce

environment, (3) evaluate the mediation effect of perceived value’s

dimensions and perceived risk, (4) determine the moderation effect of trust

propensity. Data analyses were conducted by using the statistical package for

social sciences and analysis of moment structures software in useful sample

of 349 respondents in Vietnam. Two aspects as business and customer views

are reviewed, explored, discussed in this study.

IV

The major findings include:

(1) The study synthesized diverse BDA concepts that provide deeper

insight about application of BDA for e-commerce firms. It is highlight that

the increase in interest related to BDA in e-commerce in recent years. BDA

applications in e-commerce can be divided into five aspects like as creating

transparency, discovering needs and improving performance, segmenting

market, better decision making, new product or business model innovation.

These applications bring many business values but also raise some challenges

when e-firms want to apply BDA.

(2) The findings found that information search, recommendation system,

dynamic pricing, and customer services had different significant positive

effects on customers’ responses. Specifically, information search had a

highest significant influence on customers’ intention and improved

customers’ behavior. Following by dynamic pricing, recommendation system

and customers’ service also had significant impact on customers’ intention but

decreased customers’ behavior. On another hand, privacy and security,

shopping addiction, and group influences were found to have different

significant negative effects on customers’ responses. Specifically, shopping

addiction had a drastic change from intention to behavior compared to group

influences and privacy and security. It cannot be denied that customers

receive positive and negative factors at the same time.

(3) The results confirmed that functional and emotional values play

mediating roles between positive of applying BDA and consumers’ responses.

However, there weren’t significant different between mediator effect of

functional value and emotional value. This finding highlights the notification

that customers nowadays not only find their products or services but also seek

enjoyment when online shopping under Big Data era. Therefore, e-firms

should increase perceived value based on creasing equally functional and

emotional values.

V

(4) The study found out that perceived risk don’t act mediate the

relationship between negative of applying BDA and consumers’ responses.

Besides, customers’ trust propensity was found to moderate the relation of

negative factor of applying BDA to customers’ responses and perceived risk

to customers’ responses. High trust propensity participants reported stronger

responses than those with low trust propensity. It due to customers’ trust on

new applications of BDA, hence, it is easy to influence on customers as their

negative response when negative factor and perceived risk are rising.

This study contributes to improve understanding of applications of Big

Data Analytics under business view and customer view. This could play an

important role to develop sustainable consumers market. E-vendors can rely

on Big Data analytics but over usage may have some negative applications.

Besides that, the research also broader discussion regarding future research

opportunities, challenges in theory and practice.

Keywords: E-commerce, Big Data Analytics, Customers’ Responses,

Perceived Value, Perceived Risk, Trust Propensity

.

VI

ACKNOWLEDGEMENTS

This study has been carried out at the Department of Tropical

Agriculture and International Cooperation (DTAIC), National Pingtung

University of Science and Technology (NPUST), Taiwan. This is the outcome

of knowledge that I received from this university, my continuous efforts to

learning, and consistent guidance of my advisor.

Firstly, I would like to express my sincere gratitude to my advisor,

Professor Shu-Yi Liaw for continuous support of my Ph.D. study and related

research. He has given me valuable guideline, patience, assistance, motivation

and inspiration during Ph.D. time. His intellectual direction and critical

reviews of research works helps me all the time and find a right tract towards

the successfully competition of this dissertation. He is the best teacher I have

met.

Besides my advisor, I would like to thank the rest of my advisory

committee: Dr. Shi-Jer Lou, Dr. Rong-Fang Chen, Dr. Shih-Wei Chou, and

Dr. Pei-Chen Sun, for their insightful comments and encouragement.

My sincere thanks also goes to Dr. Nguyen Tuan Anh who encourage

me to join Ph.D. program. Many thanks to Dr. Joey Lee, Dr. Henry Chen and

other faculties who provided for their encouragement and supports during my

study. I would like to thank Barbara, Sylvia (OIA), Sophia, Joanna and all

DTAIC staff, Yang Ya-Chu, Lin Yi-Ru and other staff of computer center for

their assistants.

I thank my fellow classmates for the discussions and fun time we had.

Also thank my international friends Mediana Purnamasari (Indonesia), Mr.

Chuang-Yeh Huang (Johnson), Mr. Edgardo, Caleb Milk Breria (P&G),

Miguel, Michael Qwanafia Bilau (Solomon Islands), Rudra (Nepal), Stanley,

Jimmy, Adam, Guo Wei-Peng and other my friends for their support during

VII

the entire study. Thanks to Vietnamese student association members and the

time we have fun activities together.

I would like to thank NPUST and Chung Hwa Rotary Education

Foundation for providing me the scholarship to pursue my doctoral degree.

Last but not the least, I extremely grateful to my family, my boyfriend

and my relatives who have always given me encouragement and support to

finalize my study in abroad.

VIII

TABLE OF CONTENTS

摘要.............................................................................................................................I

ABSTRACT............................................................................................................ III

ACKNOWLEDGEMENTS ..................................................................................VI

TABLE OF CONTENTS ................................................................................... VIII

LIST OF TABLES................................................................................................XII

LIST OF FIGURES............................................................................................ XIV

CHAPTER I. INTRODUCTION ........................................................................... 1

1.1.Background of the Study..................................................................................... 1

1.2.Statement of the Problem.................................................................................... 2

1.3.Objectives of the Study ....................................................................................... 3

1.4.Contribution of the Study.................................................................................... 4

1.5.Definition of the Operation Terms...................................................................... 5

1.6.Research Flowchart ............................................................................................. 6

1.7.Research Systematic Discussion ......................................................................... 8

CHAPTER II. LITERATURE REVIEW ........................................................... 11

2.1.Concept of Big Data in E-commerce Environment .......................................... 11

2.1.1. Big Data Analytics in the E-Commerce Environment ............................... 11

2.1.2. Big Data’s Distinctive Characteristics........................................................ 13

2.1.3. Types of Big Data Used in E-commerce .................................................... 18

2.2.Big data analytics in E-commerce: Aspect of business .................................... 22

2.2.1. Literature Review Research Approach....................................................... 23

IX

2.2.2. Business Values of Applying Big Data Analytics for E-commerce

Firms.......................................................................................................... 27

2.2.3. Challenges of Applying Big Data Analytics in E-commerce..................... 30

2.3.Big data analytics in E-commerce: Aspect of Customer .................................. 34

2.3.1. Positive Factor of Applying BDA on Customers’ Responses.................... 35

2.3.2. Negative effects of applying Big Data analytics on customers’

responses.................................................................................................... 40

2.3.3. The Mediating Role of Perceived Value and Perceived Risk .................... 42

2.3.4. The Moderating Effect of Individual Trust Propensity .............................. 46

2.3.5. Behavior Consumer Responses Hierarchy Models.................................... 47

CHAPTER III. RESEARCH METHODOLOGY.............................................. 49

3.1.Research Model and Research Hypotheses....................................................... 49

3.1.1. Mechanism of Applying Big data Analysis and Customers’ Responses ... 49

3.1.2. Perceived Value as the mediator for Positive Factor of Applying BDA

and Customers’ Responses........................................................................ 50

3.1.3. The Mediating Role of Perceived Risk and Moderating of Trust

Propensity .................................................................................................. 52

3.2.The Operational Definition and Measurement Design ..................................... 55

3.3.Research Type ................................................................................................... 60

3.4.Pilot Test............................................................................................................ 61

3.5.Sample Size ....................................................................................................... 62

3.6.Data Type and Data Collection Method............................................................ 63

3.6.1. Data Type.................................................................................................... 63

3.6.2. Data Collection Method.............................................................................. 63

3.6.3. Data Collection Procedure .......................................................................... 64

3.7.Data Analysis Techniques................................................................................. 65

X

3.7.1. Descriptive Statistics Analysis.................................................................... 65

3.7.2. Reliability and Content Validity Analysis.................................................. 65

3.7.3. Comparing Mean Test................................................................................. 66

3.7.4. Exploratory Factor Analysis....................................................................... 67

3.7.5. Structural Equation Model.......................................................................... 68

3.7.6. Mediation Test ............................................................................................ 71

3.7.7. Moderation Test.......................................................................................... 72

CHAPTER IV. RESULTS AND DISCUSSION................................................. 74

4.1.Descriptive Analysis and Mean Comparison.................................................... 74

4.1.1. Descriptive Analysis................................................................................... 74

4.1.2. Mean Comparison....................................................................................... 75

4.2.Reliability Analysis........................................................................................... 76

4.3.Study I-Explore Positive and Negative Effects on Customers’ Responses...... 78

4.3.1. Exploratory Factor Analysis....................................................................... 78

4.3.2. Measurement model.................................................................................... 80

4.3.3. Structural equation model........................................................................... 82

4.3.4. Discussion and Sub-conclusion .................................................................. 84

4.4.Study II-Evaluating the mediation effects of perceived value’s dimensions

on relationship between PF and CR.................................................................. 88

4.4.1. Measurement Model ................................................................................... 88

4.4.2. Structural Equation Model.......................................................................... 90

4.4.3.Discussion and Sub-conclusion .................................................................... 93

4.5.Study III-Evaluating the Mediation Effects of PV and the Moderating of TP. 95

4.5.1. Measurement Model ................................................................................... 95

4.5.2. Structural Equation Model.......................................................................... 97

XI

4.5.3. Examining Moderating Effects................................................................. 100

4.5.4. Discussion and Sub-conclusions............................................................... 104

CHAPTER V. CONCLUSIONS AND RECOMMENDATIONS................... 107

5.1. Conclusions of Research................................................................................. 107

5.2. Recommendations........................................................................................... 110

5.3. Limitations and Future Studies Recommendation.......................................... 113

REFERENCES ...................................................................................................... 115

APPENDICES ....................................................................................................... 137

Appendix A. Big Data analytics (BDA) applications in e - commerce ................ 137

Appendix B. QUESTIONNAIRE (English Version)............................................ 139

Appendix C. QUESTIONNAIRE (Vietnamese Version) .................................... 145

Biographical Sketch............................................................................................... 150

XII

LIST OF TABLES

Table 1. 5Vs of Big Data Characteristics in business analytics......................16

Table 2. Types of big data using in E-commerce ..........................................20

Table 3. Big Data analytics (BDA) applications in e - commerce..................26

Table 4. Perceived value’ dimensions.............................................................44

Table 5. Dimensions and indicators of customers’ responses........................56

Table 6. Dimensions and indicators of positive factor of applying BDA.......57

Table 7. Dimensions and indicators of positive factor of applying BDA.......58

Table 8. Dimensions and indicators of perceived value ................................. 59

Table 9. Dimensions and indicators of perceived risk.................................... 60

Table 10. Assessing Reflective Measurement Models...................................70

Table 11. Demographic descriptive (n = 349) ................................................75

Table 12. T-test results by gender and survey items.......................................76

Table 13. Anova results by experiences..........................................................76

Table 14. Reliabilities among the variables....................................................77

Table 15. Correlation among variables...........................................................79

Table 16. Varimax-rotated component analysis factor matrix........................79

Table 17. Standardized factor loadings, CR and AVE of the model..............80

Table 18. The latent variable correlation matrix: discriminant validity ......... 81

Table 19. Measurement model fit indicates....................................................81

Table 20. Results of regression .......................................................................83

Table 21. Reliability and validity of the constructs........................................ 89

Table 22. The latent variable correlation matrix: Discriminant validity. .......89

Table 23. Measurement model fit indicates....................................................90

Table 24. Path comparison of indirect effects.................................................92

Table 25. Reliability and validity of the constructs........................................ 96

Table 26. The latent variable correlation matrix: Discriminant validity. .......96

Table 27. Measurement model fit indicates....................................................97

Table 28. Mediation effect of perceived risk ..................................................99

Table 29. T-Test between trust propensity groups........................................ 100

XIII

Table 30. Relationship between NF and CR, moderator effect by TP .........102

Table 31. The finding of hypothesis analysis ............................................... 108

Table 32. Future research questions for BDA in e-commerce...................... 114

XIV

LIST OF FIGURES

Figure 1. Conceptual Framework of the research............................................. 8

Figure 2. The ease of capturing big data’s value, and the magnitude of its

potential, vary across sectors. ..........................................................12

Figure 3. Characteristics and processing of Big Data.....................................14

Figure 4. Selection criteria and evaluation framework...................................22

Figure 5. Distribution of articles by year. .......................................................25

Figure 6. The evolution of consumer behavior...............................................35

Figure 7. Model 1-Exploring and determining the mechanism of applying

BDA................................................................................................. 50

Figure 8. Model 2-The mediating role of perceived value .............................52

Figure 9. Model 3-The mediating role of perceived risk................................54

Figure 10. A conceptual diagram of a simple mediation................................71

Figure 11. A conceptual diagram of a simple mediator..................................72

Figure 12. A simple moderation model depicted as a statistical diagram. .....72

Figure 13. A combing mediation and moderation model depicted as a

statistical diagram............................................................................73

Figure 14. A simple combing mediation and moderation conceptual model. 73

Figure 15. The results of the research model..................................................82

Figure 16. Results of regression...................................................................... 84

Figure 17. The results of direct effect.............................................................90

Figure 18. The results of mediation model .....................................................91

Figure 19. The results of direct effect.............................................................97

Figure 20. The results of mediation model .....................................................99

Figure 21. The results of moderating model................................................. 101

Figure 22. Moderator effect of TP in relation between NF and CR............. 103

Figure 23. Moderator effect of TP in relation between PR and CR ............. 104

Tải ngay đi em, còn do dự, trời tối mất!