Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Xấp xỉ nghiệm của bất đẳng thức biến phân trên tập điểm bất động chung của một họ vô hạn đếm được ánh xạ gần không giãn
MIỄN PHÍ
Số trang
40
Kích thước
536.3 KB
Định dạng
PDF
Lượt xem
1418

Xấp xỉ nghiệm của bất đẳng thức biến phân trên tập điểm bất động chung của một họ vô hạn đếm được ánh xạ gần không giãn

Nội dung xem thử

Mô tả chi tiết

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KHOA HỌC

NGUYỄN THỊ THU

XẤP XỈ NGHIỆM CỦA BẤT ĐẲNG THỨC BIẾN

PHÂN TRÊN TẬP ĐIỂM BẤT ĐỘNG CHUNG

CỦA MỘT HỌ VÔ HẠN ĐẾM ĐƯỢC

ÁNH XẠ GẦN KHÔNG GIÃN

LUẬN VĂN THẠC SĨ TOÁN HỌC

THÁI NGUYÊN-2015

Số hóa bởi Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KHOA HỌC

NGUYỄN THỊ THU

XẤP XỈ NGHIỆM CỦA BẤT ĐẲNG THỨC BIẾN

PHÂN TRÊN TẬP ĐIỂM BẤT ĐỘNG CHUNG

CỦA MỘT HỌ VÔ HẠN ĐẾM ĐƯỢC

ÁNH XẠ GẦN KHÔNG GIÃN

Chuyên ngành: Toán ứng dụng

Mã số: 60 46 01 12

LUẬN VĂN THẠC SĨ TOÁN HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC

TS. TRƯƠNG MINH TUYÊN

THÁI NGUYÊN-2015

Số hóa bởi Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn

i

LỜI CẢM ƠN

Tác giả xin gửi lời cảm ơn đến các thầy cô giáo trong khoa Toán - Tin, trường

Đại học Khoa học - Đại học Thái Nguyên nói chung và các thầy cô ở bộ môn

Toán ứng dụng nói riêng đã giảng dạy và dìu dắt tác giả trong suốt thời gian

qua. Đặc biệt, tác giả xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới TS.

Trương Minh Tuyên, thầy đã tận tình chỉ bảo, hướng dẫn và giúp đỡ tác giả

trong suốt quá trình làm luận văn.

Cuối cùng tác giả xin bày tỏ lòng biết ơn tới gia đình, bạn bè đồng nghiệp đã

tận tình giúp đỡ tác giả trong suốt quá trình học tập và hoàn thành luận văn.

Học viên

Nguyễn Thị Thu

ii

Mục lục

Một số ký hiệu và viết tắt 1

Mở đầu 3

1 Kiến thức chuẩn bị 4

1.1. Không gian Hilbert và một số đặc trưng . . . . . . . . . . . . . . 4

1.2. Bài toán bất đẳng thức biến phân cổ điển . . . . . . . . . . . . . 8

1.3. Một số phương pháp tìm nghiệm cho bất đẳng thức biến phân cổ

điển . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1. Phương pháp gradient . . . . . . . . . . . . . . . . . . . . 13

1.3.2. Phương pháp gradient tăng cường . . . . . . . . . . . . . . 13

1.4. Một số bổ đề bổ trợ . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Bất đẳng thức biến phân trên tập điểm bất động của ánh xạ

gần không giãn 17

2.1. Bất đẳng thức biến phân trên tập điểm bất động chung của một

họ hữu hạn ánh xạ không giãn . . . . . . . . . . . . . . . . . . . . 17

2.2. Bất đẳng thức biến phân trên tập điểm bất động chung của một

họ vô hạn đếm được ánh xạ gần không giãn . . . . . . . . . . . . 25

Tài liệu tham khảo 34

Tải ngay đi em, còn do dự, trời tối mất!