Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tuyển tập đề và đáp án thi HSG casio
Nội dung xem thử
Mô tả chi tiết
vntoanhoc.com
TUYN TP
CÁC THI GII TOÁN
TRÊN MÁY TÍNH IÊN T
(CASIO FX-500A, CASIO FX-500MS, CASIO FX-570MS)
2
B GIÁO DC VÀ ÀO TO
CHÍNH TH C
K
THI KHU VC GII TOÁN TRÊN MÁY TÍNH CASIO
N M 2007
L p 12 THPT
Th
i gian : 150 phút ( Không k th
i gian giao )
Ngày thi : 13/3/2007
Bài 1 : Cho hàm s ( ) (,1 )0
1
= + ≠
−
f x ax x .Giá tr nào ca α tha mãn h thc
6 [ ( 1)] (2) 3
1
− + =
−
f f f
S : ,3 8427; ,11107 a1 ≈ a2 ≈ −
Bài 2 : Tính gn úng giá tr cc i vá cc tiu ca hàm s ( )
4 5
2 7 1
2
2
+ +
− +
=
x x
x x
f x S :
fCT ≈ − .0 4035; fCD ≈ 25,4035
Bài 3 :Tìm nghim gn úng ( , phút , giây ) ca phng trình :
sin x cos x + 3 ( sin x – cos x ) = 2
S :
0 ' " 0
2
0 ' " 0
x1 ≈ 67 54 33 + k360 ; x ≈ 202 5 27 + k360
Bài 4 : Cho dãy s {un } v i
n
n
n
n
u
= +
cos 1
a) Hãy chng t rng , v i N = 1000 , có th tìm cp hai ch s 1 , m l n hn N sao cho
2 um − u1 ≥
S : ) ,2 2179 a u1005 −u1002 >
b) V i N = 1 000 000 i u nói trên còn úng không ?
S : ) ,2 1342 b u1000007 − u1000004 >
c) V i các kt qu tính toán nh trên , Em có d oán gì v gi i hn ca dãy s ã cho ( khi
n → ∞ )
S : Không tn ti gi i hn
Bài 5 :Tìm hàm s bc 3 i qua các im A ( -4 ; 3 ) , B ( 7 ; 5 ) , C ( -5 ; 6 ) , D ( -3 ; -8 ) và
khong cách gi a hai im cc tr ca nó .
S : ; 105,1791
22
1395
;
1320
25019
;
110
123
;
1320
563
a = b = c = − d = − khoangcach ≈
Bài 6 : Khi sn xu!t v lon s a bò hình tr" , các nhà thit k luôn t m"c tiuê sao cho chi phí
nguyên liu làm v hp ( s#t tây ) là ít nh!t , tc là din tích toàn phn ca hình tr" là nh
nh!t . Em hãy cho bit din tích toàn phn ca lon khi ta mun có th tích ca lon là 3
314cm
S :r ≈ ,3 6834; S ≈ 255,7414
Bài 7 : Gii h phng trình :
+ = +
+ = +
x x y y
x y y x
2 2 2
2 2 2
log 72 log 2 log
log log 3 log
S : x ≈ ,0 4608; y ≈ ,0 9217
3
Bài 8 : Cho tam giác ABC vuông ti nh A ( -1 ; 2 ; 3 ) c nh , còn các nh B và C di
chuyn trên
ng th$ng i qua hai im M ( -1 ; 3 ; 2 ) , N ( 1 ; 1 ; 3 ) . Bit rng góc ABC
bng 0
30 , hãy tính t%a nh B .
S :
3
7 2 3
;
3
7 2 3
;
3
1 2 3 ±
=
±
=
− ±
x = y z
Bài 9 : Cho hình tròn O bán kính 7,5 cm , hình viên phân AXB , hình ch nht ABCD v i hai
cnh AD = 6,5cm và DC = 12 cm có v trí nh hình bên
S : gocAOB ≈ ,18546rad;S = 73,5542
a) S o radian ca góc AOB là bao nhiêu ?
b) Tìm din tích hình AYBCDA
Bài 10 : Tính t& s gi a cnh ca khi a din u 12 mt ( hình ng' giác u ) và bán kính
mt cu ngoi tip a din
S : k ≈ ,0 7136
vntoanhoc.com
4
y
x
M
D
B
A(10;1)
C(1;5)
O
B GIÁO DC VÀ ÀO TO
CHÍNH TH C
K
THI KHU VC GII TOÁN TRÊN MÁY TÍNH CASIO N M 2006
L p 12 THPT
Th
i gian : 150 phút ( Không k th
i gian giao )
Ngày thi : 10/3/2006
Bài 1 : Tính giá tr ca hàm s
2 6
2
6 3
− + = −
x x
x
y ti x = 2006
S : y ≈ .2 9984
Bài 2 : Cho hàm s
2
1
( )
x y = f x = xe
a) Tìm giá tr f(0,1) S : 12 .2 6881 10.
b) Tìm các cc tr ca hàm s . S : 3316 f max ≈ − .2 , .2 3316 f min ≈
Bài 3 : Khai trin 2 8
1( + x )7 1( + ax) d i dng ... 1 10 2
+ x + bx +
Hãy tìm các h s a và b S : 6144 a ≈ .0 5886;b ≈ 41.
Bài 4 : Bit dãy s } {an (c xác nh theo công thc :
a a an 3an 2an 1 = ,1 2 = ,2 +2 = +1 + v i m%i n nguyên dng .
Hãy cho bit giá tr ca a15 S : 32826932 a15 =
Bài 5 : Gii h phng trình
24, 21 2, 42 3,85 30, 24
2,31 31, 49 1,52 40,95
3, 49 4,85 28,72 42,81
x y z
x y z
x y z
+ + =
+ + =
+ + =
S :
0.9444
1.1743
1.1775
x
y
z
≈
≈
≈
Bài 6 : Tìm nghim dng nh nh!t ca phng trình )1 cos cos ( 2
2 2
πx = π x + x + S :
x = ,5.0 x ≈ .0 3660
Bài 7 : Trong bài thc hành ca môn hu!n luyn quân s có tình hung chin s) phi bi qua mt con
sông t!n công mt m"c tiêu * phía b
bên kia sông . Bit rng lòng sông rng 100 m và vn tc
bi ca chin s) bng mt n+a vn tc chy trên b . Bn hãy cho bit chin s) phi bi bao nhiêu mét
n (c m"c tiêu nhanh nh!t , nu nh dòng sông là th$ng , m"c tiêu * cách chin s) 1 km theo
ng chim bay
S :l ≈ 115.4701
Bài 8 : Cho t giác ABCD có A(10 ; 1) , B nm trên tr"c hoành ,
C(1;5) , A và C i xng v i nhau qua BD ,
M là giao im ca hai
ng chéo AC và BD , BM BD
4
1
=
a)Tính din tích t giác ABCD
b) S : S ≈ 64.6667
c)Tính
ng cao i qua nh D ca tam giác ABD
S : ≈ 10.9263 D
h