Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Bài giải mạch P9 docx
Nội dung xem thử
Mô tả chi tiết
Chapter 9, Solution 1.
(a) angular frequency ω = 103
rad/s
(b) frequency f =
π
ω
2
= 159.2 Hz
(c) period T = f =
1
6.283 ms
(d) Since sin(A) = cos(A – 90°),
vs = 12 sin(103
t + 24°) = 12 cos(103
t + 24° – 90°)
vs in cosine form is vs = 12 cos(103
t – 66°) V
(e) vs(2.5 ms) = 12sin((10 )(2.5 10 ) 24 ) 3 -3 × + °
= 12 sin(2.5 + 24°) = 12 sin(143.24° + 24°)
= 2.65 V
Chapter 9, Solution 2.
(a) amplitude = 8 A
(b) ω = 500π = 1570.8 rad/s
(c) f =
π
ω
2
= 250 Hz
(d) Is = 8∠-25° A
Is(2 ms) = 8cos((500 )(2 10 ) 25 ) -3 π × − °
= 8 cos(π − 25°) = 8 cos(155°)
= -7.25 A
Chapter 9, Solution 3.
(a) 4 sin(ωt – 30°) = 4 cos(ωt – 30° – 90°) = 4 cos(ωt – 120°)
(b) -2 sin(6t) = 2 cos(6t + 90°)
(c) -10 sin(ωt + 20°) = 10 cos(ωt + 20° + 90°) = 10 cos(ωt + 110°)
Chapter 9, Solution 4.
(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)
(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)
Chapter 9, Solution 5.
v1 = 20 sin(ωt + 60°) = 20 cos(ωt + 60° − 90°) = 20 cos(ωt − 30°)
v2 = 60 cos(ωt − 10°)
This indicates that the phase angle between the two signals is 20° and that v1 lags
v2.
Chapter 9, Solution 6.
(a) v(t) = 10 cos(4t – 60°)
i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)
Thus, i(t) leads v(t) by 20°.
(b) v1(t) = 4 cos(377t + 10°)
v2(t) = -20 cos(377t) = 20 cos(377t + 180°)
Thus, v2(t) leads v1(t) by 170°.
(c) x(t) = 13 cos(2t) + 5 sin(2t) = 13 cos(2t) + 5 cos(2t – 90°)
X = 13∠0° + 5∠-90° = 13 – j5 = 13.928∠-21.04°
x(t) = 13.928 cos(2t – 21.04°)
y(t) = 15 cos(2t – 11.8°)
phase difference = -11.8° + 21.04° = 9.24°
Thus, y(t) leads x(t) by 9.24°.
Chapter 9, Solution 7.
If f(φ) = cosφ + j sinφ,
-sin jcos j(cos jsin ) jf( ) d
df = φ + φ = φ + φ = φ φ
= jdφ f
df
Integrating both sides
ln f = jφ + ln A
f = Aejφ
= cosφ + j sinφ
f(0) = A = 1
i.e. f(φ) = ejφ
= cosφ + j sinφ
Chapter 9, Solution 8.
(a) 3 j4
15 45
−
∠ °
+ j2 = ∠ °
∠ °
5 - 53.13
15 45
+ j2
= 3∠98.13° + j2
= -0.4245 + j2.97 + j2
= -0.4243 + j4.97
(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°
(2 j)(3 - j4)
8 - 20
+
∠ ° + - 5 j12
10
+
= ∠ °
∠ °
11.18 - 26.57
8 - 20
+
25 144
(-5 j12)(10)
+
−
= 0.7156∠6.57° − 0.2958
− j0.71
= 0.7109 + j0.08188 −
0.2958 − j0.71
= 0.4151 − j0.6281
(c) 10 + (8∠50°)(13∠-68.38°) = 10+104∠-17.38°
= 109.25 – j31.07
Chapter 9, Solution 9.
(a) 2 +
5 j8
3 j4
−
+
= 2 +
25 64
(3 j4)(5 j8)
+
+ +
= 2 +
89
15 + j24 + j20 − 32
= 1.809 + j0.4944
(b) 4∠-10° +
∠ °
−
3 6
1 j2
= 4∠-10° +
∠ °
∠ °
3 6
2.236 - 63.43
= 4∠-10° + 0.7453∠-69.43°
= 3.939 – j0.6946 + 0.2619 – j0.6978
= 4.201 – j1.392
(c) ∠ °− ∠ °
∠ °+ ∠ °
9 80 4 50
8 10 6 - 20
=
1.5628 j8.863 2.571 j3.064
7.879 j1.3892 5.638 j2.052
+ − −
+ + −
=
1.0083 j5.799
13.517 j0.6629
− +
− = ∠ °
∠ °
5.886 99.86
13.533 - 2.81
= 2.299∠-102.67°
= -0.5043 – j2.243
Chapter 9, Solution 10.
(a) z1 = 6 − j8, z 2 = 8.66 − j5, and z 3 = −4 − j6.9282
z1 + z2 + z3 = 10.66 − j19.93
(b) 9.999 7.499
3
1 2 j
z
z z = +
Chapter 9, Solution 11.
(a) = (-3 + j4)(12 + j5) 1 2 z z
= -36 – j15 + j48 – 20
= -56 + j33
(b) ∗
2
1
z
z
=
12 j5
- 3 j4
−
+
=
144 25
(-3 j4)(12 j5)
+
+ +
= -0.3314 + j0.1953
(c) = (-3 + j4) + (12 + j5) = 9 + j9 1 2 z + z
1 2 z − z = (-3 + j4) – (12 + j5) = -15 – j
1 2
1 2
z z
z z
−
+
= -(15 j)
9(1 j)
+
+
= 2 2 15 1
- 9(1 j)(15 - j)
−
+
=
226
- 9(16 + j14)
= -0.6372 – j0.5575