Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Bài giải mạch P9 docx
PREMIUM
Số trang
46
Kích thước
1.5 MB
Định dạng
PDF
Lượt xem
1563

Tài liệu Bài giải mạch P9 docx

Nội dung xem thử

Mô tả chi tiết

Chapter 9, Solution 1.

(a) angular frequency ω = 103

rad/s

(b) frequency f =

π

ω

2

= 159.2 Hz

(c) period T = f =

1

6.283 ms

(d) Since sin(A) = cos(A – 90°),

vs = 12 sin(103

t + 24°) = 12 cos(103

t + 24° – 90°)

vs in cosine form is vs = 12 cos(103

t – 66°) V

(e) vs(2.5 ms) = 12sin((10 )(2.5 10 ) 24 ) 3 -3 × + °

= 12 sin(2.5 + 24°) = 12 sin(143.24° + 24°)

= 2.65 V

Chapter 9, Solution 2.

(a) amplitude = 8 A

(b) ω = 500π = 1570.8 rad/s

(c) f =

π

ω

2

= 250 Hz

(d) Is = 8∠-25° A

Is(2 ms) = 8cos((500 )(2 10 ) 25 ) -3 π × − °

= 8 cos(π − 25°) = 8 cos(155°)

= -7.25 A

Chapter 9, Solution 3.

(a) 4 sin(ωt – 30°) = 4 cos(ωt – 30° – 90°) = 4 cos(ωt – 120°)

(b) -2 sin(6t) = 2 cos(6t + 90°)

(c) -10 sin(ωt + 20°) = 10 cos(ωt + 20° + 90°) = 10 cos(ωt + 110°)

Chapter 9, Solution 4.

(a) v = 8 cos(7t + 15°) = 8 sin(7t + 15° + 90°) = 8 sin(7t + 105°)

(b) i = -10 sin(3t – 85°) = 10 cos(3t – 85° + 90°) = 10 cos(3t + 5°)

Chapter 9, Solution 5.

v1 = 20 sin(ωt + 60°) = 20 cos(ωt + 60° − 90°) = 20 cos(ωt − 30°)

v2 = 60 cos(ωt − 10°)

This indicates that the phase angle between the two signals is 20° and that v1 lags

v2.

Chapter 9, Solution 6.

(a) v(t) = 10 cos(4t – 60°)

i(t) = 4 sin(4t + 50°) = 4 cos(4t + 50° – 90°) = 4 cos(4t – 40°)

Thus, i(t) leads v(t) by 20°.

(b) v1(t) = 4 cos(377t + 10°)

v2(t) = -20 cos(377t) = 20 cos(377t + 180°)

Thus, v2(t) leads v1(t) by 170°.

(c) x(t) = 13 cos(2t) + 5 sin(2t) = 13 cos(2t) + 5 cos(2t – 90°)

X = 13∠0° + 5∠-90° = 13 – j5 = 13.928∠-21.04°

x(t) = 13.928 cos(2t – 21.04°)

y(t) = 15 cos(2t – 11.8°)

phase difference = -11.8° + 21.04° = 9.24°

Thus, y(t) leads x(t) by 9.24°.

Chapter 9, Solution 7.

If f(φ) = cosφ + j sinφ,

-sin jcos j(cos jsin ) jf( ) d

df = φ + φ = φ + φ = φ φ

= jdφ f

df

Integrating both sides

ln f = jφ + ln A

f = Aejφ

= cosφ + j sinφ

f(0) = A = 1

i.e. f(φ) = ejφ

= cosφ + j sinφ

Chapter 9, Solution 8.

(a) 3 j4

15 45

∠ °

+ j2 = ∠ °

∠ °

5 - 53.13

15 45

+ j2

= 3∠98.13° + j2

= -0.4245 + j2.97 + j2

= -0.4243 + j4.97

(b) (2 + j)(3 – j4) = 6 – j8 + j3 + 4 = 10 – j5 = 11.18∠-26.57°

(2 j)(3 - j4)

8 - 20

+

∠ ° + - 5 j12

10

+

= ∠ °

∠ °

11.18 - 26.57

8 - 20

+

25 144

(-5 j12)(10)

+

= 0.7156∠6.57° − 0.2958

− j0.71

= 0.7109 + j0.08188 −

0.2958 − j0.71

= 0.4151 − j0.6281

(c) 10 + (8∠50°)(13∠-68.38°) = 10+104∠-17.38°

= 109.25 – j31.07

Chapter 9, Solution 9.

(a) 2 +

5 j8

3 j4

+

= 2 +

25 64

(3 j4)(5 j8)

+

+ +

= 2 +

89

15 + j24 + j20 − 32

= 1.809 + j0.4944

(b) 4∠-10° +

∠ °

3 6

1 j2

= 4∠-10° +

∠ °

∠ °

3 6

2.236 - 63.43

= 4∠-10° + 0.7453∠-69.43°

= 3.939 – j0.6946 + 0.2619 – j0.6978

= 4.201 – j1.392

(c) ∠ °− ∠ °

∠ °+ ∠ °

9 80 4 50

8 10 6 - 20

=

1.5628 j8.863 2.571 j3.064

7.879 j1.3892 5.638 j2.052

+ − −

+ + −

=

1.0083 j5.799

13.517 j0.6629

− +

− = ∠ °

∠ °

5.886 99.86

13.533 - 2.81

= 2.299∠-102.67°

= -0.5043 – j2.243

Chapter 9, Solution 10.

(a) z1 = 6 − j8, z 2 = 8.66 − j5, and z 3 = −4 − j6.9282

z1 + z2 + z3 = 10.66 − j19.93

(b) 9.999 7.499

3

1 2 j

z

z z = +

Chapter 9, Solution 11.

(a) = (-3 + j4)(12 + j5) 1 2 z z

= -36 – j15 + j48 – 20

= -56 + j33

(b) ∗

2

1

z

z

=

12 j5

- 3 j4

+

=

144 25

(-3 j4)(12 j5)

+

+ +

= -0.3314 + j0.1953

(c) = (-3 + j4) + (12 + j5) = 9 + j9 1 2 z + z

1 2 z − z = (-3 + j4) – (12 + j5) = -15 – j

1 2

1 2

z z

z z

+

= -(15 j)

9(1 j)

+

+

= 2 2 15 1

- 9(1 j)(15 - j)

+

=

226

- 9(16 + j14)

= -0.6372 – j0.5575

Tải ngay đi em, còn do dự, trời tối mất!