Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Tài liệu Bài giải mạch P14 doc
Nội dung xem thử
Mô tả chi tiết
Chapter 14, Solution 1.
1 j RC
j RC
R 1 j C
R
( )
i
o
+ ω
ω = + ω
ω = = V
V
H
H(ω) = 0
0
1 j
j
+ ω ω
ω ω , where RC
1
ω0 =
2
0
0
1 ( )
H ( )
+ ω ω
ω ω = H ω =
ω
ω − π
φ = ∠ ω = 0
-1 tan
2
H( )
This is a highpass filter. The frequency response is the same as that for P.P.14.1
except that ω0 = 1 RC . Thus, the sketches of H and φ are shown below.
H
ω0 = 1/RC ω
1
0.7071
0
0
90°
φ
ω0 = 1/RC ω
45°
Chapter 14, Solution 2.
= + ω = + ω
ω = 1 j L R
1
R j L
R
H( )
0 1 j
1
+ ω ω , where
L
R
ω0 =
2
0 1 ( )
1
H ( )
+ ω ω = H ω =
ω
ω
φ = ∠ ω = 0
-1 H( ) -tan
The frequency response is identical to the response in Example 14.1 except that
ω0 = R L. Hence the response is shown below.
φ
H
ω0 = R/L ω
0.7071
1
0
ω
ω0 = R/L
-45°
-90°
0°
Chapter 14, Solution 3.
(a) The Thevenin impedance across the second capacitor where V is taken is o
1 sRC
R
Th R R ||1 sC R
+
Z = + = +
R 1 sC 1 sRC
1 sC i
Th i + = + = V
V V
ZTh
sC
1
+
Vo
−
+
− VTh
1 sC (1 sRC)(1 sC )
1 sC
Th
i
Th
Th
o Z
V
V
Z
V
+ + ⋅ = + =
(1 sRC)(1 sRC sRC (1 sRC))
1
(1 sC )(1 sRC)
1
s)
i Th
o
+ + + + = + + = = V Z
V
H(
H(s) = s R C 3sRC 1
1
2 2 2 + +
(b) RC (40 10 )(2 10 ) 80 10 0.08 3 -6 -3 = × × = × =
There are no zeros and the poles are at
= = RC
- 0.383
s1 - 4.787
= = RC
- 2.617
s 2 - 32.712
Chapter 14, Solution 4.
(a) 1 j RC
R
j C
1
R || + ω = ω
R j L(1 j RC)
R
1 j RC
R
j L
1 j RC
R
( )
i
o
+ ω + ω =
+ ω
ω +
+ ω
ω = = V
V
H
H(ω) = - RLC R j L
R
2 ω + + ω
(b) 1 j C(R j L)
j C(R j L)
R j L 1 j C
R j L
( ) + ω + ω
ω + ω = + ω + ω
+ ω
H ω =
H(ω) = 1 LC j RC
- LC j RC
2
2
− ω + ω
ω + ω
Chapter 14, Solution 5.
(a) R j L 1 j C
1 j C
( )
i
o
+ ω + ω
ω
ω = = V
V
H
H(ω) = 1 j RC LC
1
2 + ω − ω
(b) 1 j RC
R
j C
1
R || + ω = ω
R j L(1 j RC)
j L(1 j RC)
j L R (1 j RC)
j L
( )
i
o
+ ω + ω
ω + ω = ω + + ω
ω
ω = = V
V
H
H(ω) = R j L RLC
j L RLC
2
2
+ ω − ω
ω − ω
Chapter 14, Solution 6.
(a) Using current division,
R j L 1 j C
R
( )
i
o
+ ω + ω
ω = = I
I
H
1 j (20)(0.25) (10)(0.25)
j (20)(0.25)
1 j RC LC
j RC
( ) 2 2 + ω − ω
ω = + ω −ω
ω
H ω =
H(ω) = 2 1 j 5 2.5
j 5
+ ω − ω
ω
(b) We apply nodal analysis to the circuit below.
1/jωC
+ − V Io x
0.5 Vx
I R s jωL
j L 1 j C
0.5
R
x x x
s ω + ω
− = +
V V V
I
But 2 (j L 1 j C) j L 1 j C
0.5 x o
x
o → = ω + ω
ω + ω = V I
V
I
j L 1 j C
0.5
R
1
x
s
ω + ω = +
V
I
2(j L 1 j C)
1
R
1
2 (j L 1 j C) o
s
ω + ω = +
I ω + ω
I
1
R
2(j L 1 j C)
o
s +
ω + ω = I
I
j RC 2(1 LC)
j RC
1 2(j L 1 j C) R
1 ( ) 2
s
o
ω + − ω
ω = + ω + ω
ω = = I
I
H
j 2(1 0.25)
j ( ) 2 ω+ − ω
ω
H ω =
H(ω) = 2 2 j 0.5
j
+ ω− ω
ω
Chapter 14, Solution 7.
(a) 0.05 = 20log10 H
2.5 10 log10 H -3 × =
= = × -3 2.5 10 H 10 1.005773
(b) - 6.2 = 20log10H
- 0.31 = log10H
= = -0.31 H 10 0.4898
(c) 104.7 = 20log10 H
5.235 = log10 H
= = 5.235 H 10 5 1.718 × 10
Chapter 14, Solution 8.
(a) H = 0.05
HdB = 20log10 0.05 = - 26.02 , φ = 0°
(b) H = 125
HdB = 20log10 125 = 41.94 , φ = 0°
(c) = ∠ ° + = 4.472 63.43 2 j
j10
H (1)
HdB = 20log10 4.472 = 13.01 , φ = 63.43°
(d) = − = ∠ ° +
+
+ = 3.9 j1.7 4.254 - 23.55 2 j
6
1 j
3
H (1)
HdB = 20log10 4.254 = 12.577 , φ = - 23.55°
Chapter 14, Solution 9.
(1 j )(1 j 10)
1
( ) + ω + ω
H ω =
HdB = -20log10 1+ jω − 20log10 1+ jω/10
-tan ( ) tan ( /10) -1 -1 φ = ω − ω
The magnitude and phase plots are shown below.
HdB
0.1
-40
1 j /10
1
20 log10 + ω
1+ jω
1
20log10
-20
1 10 100 ω
1
1 j
1
arg
φ
-135°
1 j /10 arg + ω
+ ω
-90°
-180°
0.1 1 10 100 ω
-45°
Chapter 14, Solution 10.
ω
ω +
= ω + ω
ω =
5
j 1j 1
10
j (5 j )
50 H(j )
jω
1 20log
ω +
5
j 1
1 20log
20 log1
-40
0.1
10
1 100 ω
20
-20
HdB
40
φ
-135°
1 j / 5
1
arg
+ ω
jω
1
arg
-90°
-180°
0.1 10
1
100 ω
-45°
Chapter 14, Solution 11.
j (1 j 2)
5(1 j 10) ( )
ω + ω
+ ω
H ω =
HdB = 20log10 5 + 20log10 1+ jω 10 − 20log10 jω − 20log10 1+ jω 2
-90 tan 10 tan 2 -1 -1 φ = °+ ω − ω