Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Bài giải mạch P14 doc
PREMIUM
Số trang
73
Kích thước
1.8 MB
Định dạng
PDF
Lượt xem
1194

Tài liệu Bài giải mạch P14 doc

Nội dung xem thử

Mô tả chi tiết

Chapter 14, Solution 1.

1 j RC

j RC

R 1 j C

R

( )

i

o

+ ω

ω = + ω

ω = = V

V

H

H(ω) = 0

0

1 j

j

+ ω ω

ω ω , where RC

1

ω0 =

2

0

0

1 ( )

H ( )

+ ω ω

ω ω = H ω = 

 

ω

ω − π

φ = ∠ ω = 0

-1 tan

2

H( )

This is a highpass filter. The frequency response is the same as that for P.P.14.1

except that ω0 = 1 RC . Thus, the sketches of H and φ are shown below.

H

ω0 = 1/RC ω

1

0.7071

0

0

90°

φ

ω0 = 1/RC ω

45°

Chapter 14, Solution 2.

= + ω = + ω

ω = 1 j L R

1

R j L

R

H( )

0 1 j

1

+ ω ω , where

L

R

ω0 =

2

0 1 ( )

1

H ( )

+ ω ω = H ω = 

 

ω

ω

φ = ∠ ω = 0

-1 H( ) -tan

The frequency response is identical to the response in Example 14.1 except that

ω0 = R L. Hence the response is shown below.

φ

H

ω0 = R/L ω

0.7071

1

0

ω

ω0 = R/L

-45°

-90°

Chapter 14, Solution 3.

(a) The Thevenin impedance across the second capacitor where V is taken is o

1 sRC

R

Th R R ||1 sC R

+

Z = + = +

R 1 sC 1 sRC

1 sC i

Th i + = + = V

V V

ZTh

sC

1

+

Vo

+

− VTh

1 sC (1 sRC)(1 sC )

1 sC

Th

i

Th

Th

o Z

V

V

Z

V

+ + ⋅ = + =

(1 sRC)(1 sRC sRC (1 sRC))

1

(1 sC )(1 sRC)

1

s)

i Th

o

+ + + + = + + = = V Z

V

H(

H(s) = s R C 3sRC 1

1

2 2 2 + +

(b) RC (40 10 )(2 10 ) 80 10 0.08 3 -6 -3 = × × = × =

There are no zeros and the poles are at

= = RC

- 0.383

s1 - 4.787

= = RC

- 2.617

s 2 - 32.712

Chapter 14, Solution 4.

(a) 1 j RC

R

j C

1

R || + ω = ω

R j L(1 j RC)

R

1 j RC

R

j L

1 j RC

R

( )

i

o

+ ω + ω =

+ ω

ω +

+ ω

ω = = V

V

H

H(ω) = - RLC R j L

R

2 ω + + ω

(b) 1 j C(R j L)

j C(R j L)

R j L 1 j C

R j L

( ) + ω + ω

ω + ω = + ω + ω

+ ω

H ω =

H(ω) = 1 LC j RC

- LC j RC

2

2

− ω + ω

ω + ω

Chapter 14, Solution 5.

(a) R j L 1 j C

1 j C

( )

i

o

+ ω + ω

ω

ω = = V

V

H

H(ω) = 1 j RC LC

1

2 + ω − ω

(b) 1 j RC

R

j C

1

R || + ω = ω

R j L(1 j RC)

j L(1 j RC)

j L R (1 j RC)

j L

( )

i

o

+ ω + ω

ω + ω = ω + + ω

ω

ω = = V

V

H

H(ω) = R j L RLC

j L RLC

2

2

+ ω − ω

ω − ω

Chapter 14, Solution 6.

(a) Using current division,

R j L 1 j C

R

( )

i

o

+ ω + ω

ω = = I

I

H

1 j (20)(0.25) (10)(0.25)

j (20)(0.25)

1 j RC LC

j RC

( ) 2 2 + ω − ω

ω = + ω −ω

ω

H ω =

H(ω) = 2 1 j 5 2.5

j 5

+ ω − ω

ω

(b) We apply nodal analysis to the circuit below.

1/jωC

+ − V Io x

0.5 Vx

I R s jωL

j L 1 j C

0.5

R

x x x

s ω + ω

− = +

V V V

I

But 2 (j L 1 j C) j L 1 j C

0.5 x o

x

o → = ω + ω

ω + ω = V I

V

I

j L 1 j C

0.5

R

1

x

s

ω + ω = +

V

I

2(j L 1 j C)

1

R

1

2 (j L 1 j C) o

s

ω + ω = +

I ω + ω

I

1

R

2(j L 1 j C)

o

s +

ω + ω = I

I

j RC 2(1 LC)

j RC

1 2(j L 1 j C) R

1 ( ) 2

s

o

ω + − ω

ω = + ω + ω

ω = = I

I

H

j 2(1 0.25)

j ( ) 2 ω+ − ω

ω

H ω =

H(ω) = 2 2 j 0.5

j

+ ω− ω

ω

Chapter 14, Solution 7.

(a) 0.05 = 20log10 H

2.5 10 log10 H -3 × =

= = × -3 2.5 10 H 10 1.005773

(b) - 6.2 = 20log10H

- 0.31 = log10H

= = -0.31 H 10 0.4898

(c) 104.7 = 20log10 H

5.235 = log10 H

= = 5.235 H 10 5 1.718 × 10

Chapter 14, Solution 8.

(a) H = 0.05

HdB = 20log10 0.05 = - 26.02 , φ = 0°

(b) H = 125

HdB = 20log10 125 = 41.94 , φ = 0°

(c) = ∠ ° + = 4.472 63.43 2 j

j10

H (1)

HdB = 20log10 4.472 = 13.01 , φ = 63.43°

(d) = − = ∠ ° +

+

+ = 3.9 j1.7 4.254 - 23.55 2 j

6

1 j

3

H (1)

HdB = 20log10 4.254 = 12.577 , φ = - 23.55°

Chapter 14, Solution 9.

(1 j )(1 j 10)

1

( ) + ω + ω

H ω =

HdB = -20log10 1+ jω − 20log10 1+ jω/10

-tan ( ) tan ( /10) -1 -1 φ = ω − ω

The magnitude and phase plots are shown below.

HdB

0.1

-40

1 j /10

1

20 log10 + ω

1+ jω

1

20log10

-20

1 10 100 ω

1

1 j

1

arg

φ

-135°

1 j /10 arg + ω

+ ω

-90°

-180°

0.1 1 10 100 ω

-45°

Chapter 14, Solution 10.

 

 ω

ω +

= ω + ω

ω =

5

j 1j 1

10

j (5 j )

50 H(j )

1 20log

ω +

5

j 1

1 20log

20 log1

-40

0.1

10

1 100 ω

20

-20

HdB

40

φ

-135°

1 j / 5

1

arg

+ ω

1

arg

-90°

-180°

0.1 10

1

100 ω

-45°

Chapter 14, Solution 11.

j (1 j 2)

5(1 j 10) ( )

ω + ω

+ ω

H ω =

HdB = 20log10 5 + 20log10 1+ jω 10 − 20log10 jω − 20log10 1+ jω 2

-90 tan 10 tan 2 -1 -1 φ = °+ ω − ω

Tải ngay đi em, còn do dự, trời tối mất!