Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Bài giải mạch P12 doc
Nội dung xem thử
Mô tả chi tiết
Chapter 12, Solution 1.
(a) If 400 , then Vab =
= ∠ - 30° = 3
400
Van 231∠ - 30° V
Vbn = 231∠ - 150° V
Vcn = 231∠ - 270° V
(b) For the acb sequence,
= − = V ∠0°− V ∠120° Vab Van Vbn p p
= ∠ °
= + − V 3 - 30
2
3
j 2
1
Vab Vp 1 p
i.e. in the acb sequence, lags by 30°. Vab Van
Hence, if 400 , then Vab =
= ∠30° = 3
400
Van 231∠30° V
V V bn = 231∠150°
V V cn = 231∠ - 90°
Chapter 12, Solution 2.
Since phase c lags phase a by 120°, this is an acb sequence.
Vbn = 160∠(30°+120°) = 160∠150° V
Chapter 12, Solution 3.
Since V leads by 120°, this is an bn Vcn abc sequence.
V V an = 208∠(130°+120°) = 208∠250°
Chapter 12, Solution 4.
Vbc = Vca∠120° = 208∠140° V
Vab = Vbc∠120° = 208∠260° V
= ∠ °
∠ ° = ∠ ° = 3 30
208 260
3 30
ab
an
V
V V 120∠230°
Vbn = Van∠ -120° = 120∠110° V
Chapter 12, Solution 5.
This is an abc phase sequence.
= 3 ∠30° Vab Van
or = ∠ °
∠ ° = ∠ ° = 3 30
420 0
3 30
ab
an
V
V V 242.5∠ - 30°
V V bn = Van∠ -120° = 242.5∠ - 150°
Vcn = Van∠120° = 242.5∠90° V
Chapter 12, Solution 6.
= 10 + j5 = 11.18∠26.56° Z Y
The line currents are
= ∠ °
∠ ° = = 11.18 26.56
220 0
Y
an
a Z
V
I 19.68∠ - 26.56° A
I A b = I a∠ -120° = 19.68∠ - 146.56°
I c = I a∠120° = 19.68∠93.44° A
The line voltages are
Vab = 200 3 ∠30° = 381∠30° V
Vbc = 381∠ - 90° V
Vca = 381∠ - 210° V
The load voltages are
V V AN = I a Z Y = Van = 220∠0°
VBN = Vbn = 220∠ - 120° V
VCN = Vcn = 220∠120° V
Chapter 12, Solution 7.
This is a balanced Y-Y system.
+
− 440∠0° V ZY = 6 − j8 Ω
Using the per-phase circuit shown above,
= −
∠ ° = 6 j8
440 0 a I A 44∠53.13°
I A b = I a∠ -120° = 44∠ - 66.87°
I c = I a∠120° = 44∠173.13° A
Chapter 12, Solution 8.
V 220 V , L = Z Y = 16 + j9 Ω
= ∠ ° + = = = 6.918 - 29.36
3 (16 j9)
220
3
V V
Y
L
Y
p
an Z Z
I
IL = 6.918 A
Chapter 12, Solution 9.
= +
∠ ° = + = 20 j15
120 0
L Y
an
a Z Z
V
I 4.8∠ - 36.87° A
I A b = I a∠ -120° = 4.8∠ - 156.87°
I c = I a∠120° = 4.8∠83.13° A
As a balanced system, I n = 0 A
Chapter 12, Solution 10.
Since the neutral line is present, we can solve this problem on a per-phase basis.
For phase a,
= ∠ ° −
∠ ° = + = 6.55 36.53 27 j20
220 0
2 A
an
a Z
V
I
For phase b,
= ∠ ° ∠ ° = + = 10 -120 22
220 -120
2 B
bn
b Z
V
I
For phase c,
= ∠ ° +
∠ ° = + = 16.92 97.38 12 j5
220 120
2 C
cn
c Z
V
I
The current in the neutral line is
-( ) n a b c I = I + I + I
or n a b c -I = I + I + I
- (5.263 j3.9) (-5 j8.66) (-2.173 j16.78) I n = + + − + +
I n = 1.91− j12.02 = 12.17∠ - 81° A
Chapter 12, Solution 11.
∠ °
∠ ° = ∠ ° = ∠ ° = 3 - 90
220 10
3 - 90 3 - 90
bc BC
an
V V
V
Van = 127∠100° V
VAB = VBC∠120° = 220∠130° V
VAC = VBC∠ -120° = 220∠ -110° V
If = 30∠60°, then bB I
= 30∠180° aA I , = 30∠ - 60° cC I
= ∠ ° ∠ °
∠ ° = ∠ ° = 17.32 210
3 - 30
30 180
3 - 30
aA
AB
I
I
= 17.32∠90° BC I , = 17.32∠ - 30° CA I
I AC = -ICA = 17.32∠150° A
BC Z VBC I =
= ∠ °
∠ ° = = 17.32 90
220 0
BC
BC
I
V
Z 12.7∠ - 80° Ω
Chapter 12, Solution 12.
Convert the delta-load to a wye-load and apply per-phase analysis.
Ia
110∠0° V +
− ZY
= = ∠ ° Ω ∆ 20 45 3 Y
Z
Z