Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Springer.Future.Spacecraft.Propulsion.Systems.2nd.Edition.Mar.2009.eBook-ELOHiM
PREMIUM
Số trang
574
Kích thước
18.6 MB
Định dạng
PDF
Lượt xem
1940

Springer.Future.Spacecraft.Propulsion.Systems.2nd.Edition.Mar.2009.eBook-ELOHiM

Nội dung xem thử

Mô tả chi tiết

Future Spacecraft Propulsion Systems

Enabling Technologies for Space Exploration (Second Edition)

Paul A. Czysz and Claudio Bruno

Future Spacecraft

Propulsion Systems

Enabling Technologies for Space Exploration

(Second Edition)

Published in association with

Pr isax P gublishing

Chichester, UK

Professor Paul A. Czysz

Oliver L. Parks Endowed Chair in Aerospace Engineering

Parks College of Engineering and Aviation

St Louis University

St Louis

Missouri

USA

Professor Claudio Bruno

Dipartimento di Meccanica e Aeronautica

Universita` degli Studi di Roma

La Sapienza

Rome

Italy

SPRINGER PRAXIS BOOKS IN ASTRONAUTICAL ENGINEERING

SUBJECT ADVISORY EDITOR: John Mason, M.Sc., B.Sc., Ph.D.

ISBN 978-3-540-88813-0 Springer Berlin Heidelberg New York

Springer is part of Springer-Science + Business Media (springer.com)

Library of Congress Control Number: 2008939148

Apart from any fair dealing for the purposes of research or private study, or criticism

or review, as permitted under the Copyright, Designs and Patents Act 1988, this

publication may only be reproduced, stored or transmitted, in any form or by any

means, with the prior permission in writing of the publishers, or in the case of

reprographic reproduction in accordance with the terms of licences issued by the

Copyright Licensing Agency. Enquiries concerning reproduction outside those terms

should be sent to the publishers.

First Edition published 2006

# Praxis Publishing Ltd, Chichester, UK, 2009

Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this

publication does not imply, even in the absence of a specific statement, that such

names are exempt from the relevant protective laws and regulations and therefore free

for general use.

Cover design: Jim Wilkie

Project management: OPS, Gt Yarmouth, Norfolk, UK

Printed on acid-free paper

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of tables ......................................... xxiii

Introduction .......................................... 1

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 The challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Historical developments . . . . . . . . . . . . . . . . . . . . . . 12

1.2 The challenge of flying to space . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Operational requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Operational space distances, speed, and times . . . . . . . . . . . . . 18

1.5 Implied propulsion performance . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Propulsion concepts available for Solar System exploration . . . . 28

1.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Our progress appears to be impeded . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Meeting the challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Early progress in space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Historical analogues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Evolution of space launchers from ballistic missiles . . . . . . . . . 43

2.5 Conflicts between expendable rockets and reusable airbreathers . 52

2.6 Commercial near-Earth launchers enable the first step . . . . . . . 59

2.6.1 On-orbit operations in near-Earth orbit: a necessary

second step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.2 Earth–Moon system advantages: the next step to estab￾lishing a Solar System presence . . . . . . . . . . . . . . . . . 65

2.6.3 The need for nuclear or high-energy space propulsion, to

explore the Solar System . . . . . . . . . . . . . . . . . . . . . 65

2.6.4 The need for very-high-energy space propulsion: expand￾ing our knowledge to nearby Galactic space. . . . . . . . . 66

2.6.5 The need for light speed–plus propulsion: expanding our

knowledge to our Galaxy . . . . . . . . . . . . . . . . . . . . . 66

2.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Commercial near-Earth space launcher: a perspective . . . . . . . . . . . . . 69

3.1 Energy, propellants, and propulsion requirements . . . . . . . . . . 73

3.2 Energy requirements to change orbital altitude . . . . . . . . . . . . 75

3.3 Operational concepts anticipated for future missions. . . . . . . . . 78

3.4 Configuration concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Takeoff and landing mode. . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Available solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Commercial near-Earth launcher: propulsion. . . . . . . . . . . . . . . . . . . 105

4.1 Propulsion system alternatives . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Propulsion system characteristics . . . . . . . . . . . . . . . . . . . . . 108

4.3 Airflow energy entering the engine . . . . . . . . . . . . . . . . . . . . 109

4.4 Internal flow energy losses. . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Spectrum of airbreathing operation . . . . . . . . . . . . . . . . . . . . 120

4.6 Design space available—interaction of propulsion and materials/

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Major sequence of propulsion cycles . . . . . . . . . . . . . . . . . . . 127

4.8 Rocket-derived propulsion. . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.9 Airbreathing rocket propulsion. . . . . . . . . . . . . . . . . . . . . . . 135

4.10 Thermally integrated combined cycle propulsion . . . . . . . . . . . 138

4.11 Engine thermal integration . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.12 Total system thermal integration . . . . . . . . . . . . . . . . . . . . . 142

4.13 Thermally integrated enriched air combined cycle propulsion . . . 147

4.14 Comparison of continuous operation cycles . . . . . . . . . . . . . . 150

4.15 Conclusions with respect to continuous cycles . . . . . . . . . . . . . 156

4.16 Pulse detonation engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.16.1 What is a pulse detonation engine?. . . . . . . . . . . . . . . 158

4.16.2 Pulse detonation engine performance . . . . . . . . . . . . . 159

4.17 Conclusions with respect to pulse detonation cycles . . . . . . . . . 165

4.18 Comparison of continuous operation and pulsed cycles. . . . . . . 166

4.19 Launcher sizing with different propulsion systems . . . . . . . . . . 170

4.20 Structural concept and structural index, ISTR. . . . . . . . . . . . . 172

4.21 Sizing results for continuous and pulse detonation engines. . . . . 174

4.22 Operational configuration concepts, SSTO and TSTO. . . . . . . . 179

vi Contents

4.23 Emerging propulsion system concepts in development. . . . . . . . 185

4.24 Aero-spike nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.25 ORBITEC vortex rocket engine . . . . . . . . . . . . . . . . . . . . . 196

4.25.1 Vortex hybrid rocket engine (VHRE) . . . . . . . . . . . . . 197

4.25.2 Stoichiometric combustion rocket engine (SCORE) . . . . 199

4.25.3 Cryogenic hybrid rocket engine technology . . . . . . . . . 200

4.26 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5 Earth orbit on-orbit operations in near-Earth orbit, a necessary second

step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.1 Energy requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.1.1 Getting to low Earth orbit: energy and propellant require￾ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.2 Launcher propulsion system characteristics . . . . . . . . . . . . . . . 216

5.2.1 Propellant ratio to deliver propellant to LEO . . . . . . . . 216

5.2.2 Geostationary orbit satellites sizes and mass. . . . . . . . . 220

5.3 Maneuver between LEO and GEO, change in altitude at same

orbital inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.3.1 Energy requirements, altitude change . . . . . . . . . . . . . 223

5.3.2 Mass ratio required for altitude change . . . . . . . . . . . . 223

5.3.3 Propellant delivery ratio for altitude change . . . . . . . . . 228

5.4 Changes in orbital inclination . . . . . . . . . . . . . . . . . . . . . . . 230

5.4.1 Energy requirements for orbital inclination change . . . . 231

5.4.2 Mass ratio required for orbital inclination change . . . . . 234

5.4.3 Propellant delivery ratio for orbital inclination change . . 237

5.5 Representative space transfer vehicles . . . . . . . . . . . . . . . . . . 240

5.6 Operational considerations . . . . . . . . . . . . . . . . . . . . . . . . . 242

5.6.1 Missions per propellant delivery. . . . . . . . . . . . . . . . . 243

5.6.2 Orbital structures . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5.6.3 Orbital constellations. . . . . . . . . . . . . . . . . . . . . . . . 245

5.6.4 Docking with space facilities and the International Space

Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5.6.5 Emergency rescue vehicle with capability to land within

continental United States . . . . . . . . . . . . . . . . . . . . . 252

5.7 Observations and recommendations. . . . . . . . . . . . . . . . . . . . 252

5.8 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

6 Earth–Moon system: establishing a Solar System presence . . . . . . . . . 255

6.1 Earth–Moon characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 256

6.2 Requirements to travel to the Moon . . . . . . . . . . . . . . . . . . . 259

6.2.1 Sustained operation lunar trajectories . . . . . . . . . . . . . 262

6.2.2 Launching from the Moon surface . . . . . . . . . . . . . . . 263

6.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

6.3.1 USSR exploration history . . . . . . . . . . . . . . . . . . . . 268

6.3.2 USA exploration history. . . . . . . . . . . . . . . . . . . . . . 269

Contents vii

6.3.3 India exploration history . . . . . . . . . . . . . . . . . . . . . 270

6.3.4 Japan exploration history . . . . . . . . . . . . . . . . . . . . . 270

6.4 Natural versus artificial orbital station environments . . . . . . . . 270

6.4.1 Prior orbital stations . . . . . . . . . . . . . . . . . . . . . . . . 271

6.4.2 Artificial orbital station . . . . . . . . . . . . . . . . . . . . . . 271

6.4.3 Natural orbital station . . . . . . . . . . . . . . . . . . . . . . . 274

6.5 Moon base functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.5.1 Martian analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

6.5.2 Lunar exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 278

6.5.3 Manufacturing and production site. . . . . . . . . . . . . . . 280

6.6 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Patent literature on MagLev . . . . . . . . . . . . . . . . . . . . . . . . 282

Websites on MagLev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

7 Exploration of our Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7.1 Review of our Solar System distances, speeds, and propulsion

requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7.2 Alternative energy sources: nuclear energy . . . . . . . . . . . . . . . 288

7.3 Limits of chemical propulsion and alternatives . . . . . . . . . . . . 292

7.3.1 Isp and energy sources . . . . . . . . . . . . . . . . . . . . . . . 293

7.3.2 The need for nuclear (high-energy) space propulsion . . . 296

7.4 Nuclear propulsion: basic choices . . . . . . . . . . . . . . . . . . . . . 297

7.4.1 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

7.5 Nuclear propulsion: a historical perspective . . . . . . . . . . . . . . 307

7.6 Nuclear propulsion: current scenarios . . . . . . . . . . . . . . . . . . 314

7.7 Nuclear reactors: basic technology . . . . . . . . . . . . . . . . . . . . 322

7.8 Solid core NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

7.9 Particle bed reactor NTR . . . . . . . . . . . . . . . . . . . . . . . . . . 327

7.10 CERMET technology for NTR . . . . . . . . . . . . . . . . . . . . . . 329

7.11 MITEE NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

7.12 Gas core NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

7.13 C. Rubbia’s engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

7.14 Considerations about NTR propulsion. . . . . . . . . . . . . . . . . . 339

7.15 Nuclear electric propulsion . . . . . . . . . . . . . . . . . . . . . . . . . 340

7.16 Nuclear arcjet rockets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

7.17 Nuclear electric rockets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.18 Electrostatic (ion) thrusters . . . . . . . . . . . . . . . . . . . . . . . . . 343

7.19 MPD thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

7.20 Hybrid/combined NTR/NER engines . . . . . . . . . . . . . . . . . . 351

7.21 Inductively heated NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

7.22 VASIMR (variable specific impulse magneto-plasma-dynamic

rocket) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

7.23 Combining chemical and nuclear thermal rockets. . . . . . . . . . . 359

7.24 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

7.25 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

viii Contents

8 Stellar and interstellar precursor missions . . . . . . . . . . . . . . . . . . . . 375

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

8.1.1 Quasi-interstellar destinations . . . . . . . . . . . . . . . . . . 377

8.1.2 Times and distance . . . . . . . . . . . . . . . . . . . . . . . . . 381

8.2 The question of Isp, thrust, and power for quasi-interstellar and

stellar missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

8.3 Traveling at relativistic speeds . . . . . . . . . . . . . . . . . . . . . . . 387

8.4 Power sources for quasi-interstellar and stellar propulsion . . . . . 390

8.5 Fusion and propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

8.5.1 Mission length with Isp possible with fusion propulsion . 393

8.6 Fusion propulsion: fuels and their kinetics . . . . . . . . . . . . . . . 395

8.7 Fusion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

8.8 Fusion propulsion reactor concepts. . . . . . . . . . . . . . . . . . . . 400

8.9 MCF reactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

8.10 Mirror MCF rockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

8.10.1 Tokamak MCF rockets . . . . . . . . . . . . . . . . . . . . . . 406

8.10.2 An unsteady MCF reactor: the dense plasma focus (DPF)

rocket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

8.10.3 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

8.10.4 Direct thermal MCF vs. electric MCF rockets . . . . . . . 411

8.11 Fusion propulsion—inertial confinement. . . . . . . . . . . . . . . . . 413

8.11.1 Inertial electrostatic confinement fusion . . . . . . . . . . . . 419

8.12 MCF and ICF fusion: a comparison . . . . . . . . . . . . . . . . . . . 420

8.13 Conclusions: Can we reach stars? . . . . . . . . . . . . . . . . . . . . . 428

8.14 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

9 View to the future and exploration of our Galaxy . . . . . . . . . . . . . . . 437

9.1 Issues in developing near- and far-galactic space exploration . . . 439

9.2 Black holes and galactic travel . . . . . . . . . . . . . . . . . . . . . . . 447

9.3 Superluminal speed: Is it required? . . . . . . . . . . . . . . . . . . . . 453

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

9.5 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Appendix A Nuclear propulsion—risks and dose assessment. . . . . . . . . . . 463

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

A.2 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

A.2.1 Alpha decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

A.2.2 Beta decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

A.2.3 Gamma rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

A.3 Radiation and dose quantities and units . . . . . . . . . . . . . . . . 465

A.3.1 Activity (Bq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

A.3.2 Half-life (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

A.3.3 Absorbed dose, D (Gy) . . . . . . . . . . . . . . . . . . . . . . 466

A.3.4 Equivalent dose, H (Sv) . . . . . . . . . . . . . . . . . . . . . . 466

A.3.5 Effective dose, E (Sv) . . . . . . . . . . . . . . . . . . . . . . . 468

Contents ix

A.3.6 Collective dose (man Sv) . . . . . . . . . . . . . . . . . . . . . 468

A.3.7 Dose commitment (Sv). . . . . . . . . . . . . . . . . . . . . . . 469

A.4 Effects of ionizing radiation. . . . . . . . . . . . . . . . . . . . . . . . . 469

A.4.1 Deterministic effects. . . . . . . . . . . . . . . . . . . . . . . . . 469

A.4.2 Stochastic effects. . . . . . . . . . . . . . . . . . . . . . . . . . . 470

A.5 Sources of radiation exposure . . . . . . . . . . . . . . . . . . . . . . . 473

A.5.1 Natural radiation exposure . . . . . . . . . . . . . . . . . . . . 473

A.5.2 Medical radiation exposure . . . . . . . . . . . . . . . . . . . . 476

A.5.3 Exposure from atmospheric nuclear testing . . . . . . . . . 477

A.5.4 Exposure from nuclear power production . . . . . . . . . . 478

A.5.5 Exposure from major accidents . . . . . . . . . . . . . . . . . 479

A.5.6 Occupational exposure . . . . . . . . . . . . . . . . . . . . . . . 480

A.5.7 Exposure from nuclear propulsion systems. . . . . . . . . . 480

A.5.8 Comparison of exposures . . . . . . . . . . . . . . . . . . . . . 483

A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

A.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Appendix B Assessment of open magnetic fusion for space propulsion . . . . 487

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

B.2 Space fusion power: general issues . . . . . . . . . . . . . . . . . . . . 490

B.2.1 Application of fusion for space propulsion . . . . . . . . . 492

B.2.2 Achievement of self-sustained conditions . . . . . . . . . . 493

B.2.3 Design of a generic fusion propulsion system . . . . . . . 495

B.2.4 Mass budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

B.2.5 Specific power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

B.2.6 Fusion power density . . . . . . . . . . . . . . . . . . . . . . . 502

B.2.7 Specific power : summary . . . . . . . . . . . . . . . . . . . 503

B.3 Status of open magnetic field configuration research. . . . . . . . . 504

B.3.1 Classification and present status of open magnetic field

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

B.3.2 Mirror configurations. . . . . . . . . . . . . . . . . . . . . . . . 505

B.3.3 Field-reversed configurations . . . . . . . . . . . . . . . . . . . 517

B.3.4 Spheromaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

B.3.5 Levitated dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

B.4 Further studies on fusion for space application . . . . . . . . . . . . 532

B.4.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

B.4.2 Specific design studies . . . . . . . . . . . . . . . . . . . . . . . 534

B.5 Fusion propulsion performance . . . . . . . . . . . . . . . . . . . . . . 534

B.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

B.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

x Contents

Preface

Humankind has been dreaming of traveling to space for a long time. Jules Verne

thought we could reach the moon with a giant cannon in the 1800s. In the early

1960s there was a dedicated push to develop the vehicle configurations that would

permit us to travel to space, and back through the atmosphere, as readily and

conveniently as flying on an airliner to another continent and back. That idea, or

intuition, was necessarily coupled with advanced propulsion system concepts, that

relied on capturing the oxygen within our atmosphere instead of carrying it onboard

from the ground up, as rockets developed in Germany in the 1940s did, and as satellite

launchers still do. During the 1960s the concept of space travel extended beyond our

planet, to our Solar System and the Galaxy beyond (see Chapter 1), using power

sources other than chemical, such as fission and fusion. Not much is left nowadays of

those dreams, except our present capability to build those advanced propulsion

systems.

Traveling to space in the foreseeable future is a multi-step process. The first step is

to achieve a two-way transport to and from orbit around our Earth, that is, a Low

Earth Orbit (LEO), see Chapters 2, 4 and 5. This is a critical first step as it is the key to

moving away from our Earth environment. For any future development in space,

travel that transits to and from LEO must be frequent and affordable. From a vision of

spacecraft parked in LEOs there are then several options. One is a Geo-Synchronous

Orbit or Geo-Stationary Orbit (GSO) that is at an altitude of 35,853 km (22,278

statute miles) and has an equatorial orbital period of 24 hours, so it is stationary over

any fixed point on Earth. Another option for the next step is an elliptical transfer orbit

to the Moon. The orbital speed to reach the Moon is less than the speed to escape

Earth’s orbit, so the transfer orbit is elliptical, and requires less energy to accomplish

(but more logistics) than reaching GSO. Depending on the specific speed selected, the

time to reach the Moon is between 100 to 56 hours. In fact, the Apollo program

selected a speed corresponding to a 72-hour travel time from LEO to the vicinity of the

Moon (see Chapter 6): in terms of the time needed to reach it, the Moon is truly

close to us. All circular and elliptical orbits are, mathematically speaking, closed

conics.

Another and far more eventful option is to achieve escape speed, that is a factor

square root of two faster than orbital speed. At escape speed and faster the spacecraft

trajectory is an open conic (i.e., a parabola or hyperbola), and there is no longer a

closed path returning the spacecraft to Earth. So now we can move away from the

gravitational control of Earth (not from gravity!) and proceed to explore our Solar

System and beyond. However, after taking such a step, there is a challenge of time,

distance and propulsion as we proceed farther and farther to explore our Solar

System, then nearby Galactic space and finally our Galaxy. Exploring beyond our

Galaxy is technically beyond our current or projected capabilities. In order to achieve

travel beyond our Galaxy our current understanding of thrust, mass, inertia and time

will have to be different (see Chapters 8 and 9). Mass/inertia may be the most

challenging. An article by Gordon Kane in the July 2005 Scientific American entitled

‘‘The Mysteries of Mass’’ explains our current understanding of what we call mass.

From another paper presented by Theodore Davis at the 40th Joint Propulsion

Conference [Davis, 2004] we have the following statement:

‘‘E ¼ mc2 is the expression of mass–energy equivalence and applies to all forms

of energy. That includes the energy of motion or kinetic energy. The faster an

object is going relative to another object, the greater the kinetic energy. Accord￾ing to Einstein mass and energy are equivalent, therefore the extra energy

associated with the object’s inertia manifests itself in the same way mass man￾ifests itself ... As a result, the kinetic energy adds to the object’s inertial com￾ponent and adds resistance to any change in the objects motion. In other words,

both energy and mass have inertia.’’

Inertia is a resistance to change in speed or direction. As we approach light speed, the

inertia/mass approaches infinity. As the mass approaches infinity the thrust required

to maintain constant acceleration also approaches infinity. Thus, at this point we do

not know how to exceed the speed of light. If that remains the case, we are trapped

within the environs of our Solar System.

There is a second major issue. Human tolerance to a continuous acceleration for

long periods has yet to be quantified. Nominally that is considered about three times

the surface acceleration of gravity. At that rate of acceleration the time to reach a

distant destination is numerically on the same order as the distance in light years. So if

a crewed spacecraft is to return to Earth within the lifetime of its occupants, we are

again limited to 20 light years of so. That is within the distance to the seven or eight

closest stars to our star, the Sun.

As much as the authors would hope to travel in Galactic space, it will require a

breakthrough in our understanding of mass, acceleration and propulsion. Until that

time we have much to explore and discover within the environs of our Solar System.

Coming down from Galactic space to intelligent life on Earth, the authors would

like to acknowledge the contributions of Elena and David Bruno, Catherine Czysz, Dr

Babusci at the INFN (Italian Nuclear Physics Institute), Dr Romanelli at the ENEA

xii Preface

Fusion Laboratories, Mr Simone, GS, H. David Froning, Gordon Hamilton,

Dr Christopher P. Rahaim and Dr John Mason, Praxis Subject Advisory Editor.

Special thanks go to Clive Horwood of Praxis, for his patience, constant encourage￾ment, and prodding, without which writing this book would have taken much longer.

Paul A. Czysz and Claudio Bruno

Preface xiii

Figures

1 (Introduction) Andromeda Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 (Introduction) MIRLIN (Mid Infrared Large Well Imager) image of the black

hole at the center of the Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 (Introduction) Habitable zones of life and Earth like solar systems . . . . . . . 7

4 (Introduction) Two scramjet powered space launchers for approximately Mach

12 airbreather operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Spectrum of launchers/spacecraft from 1956 to 1981 . . . . . . . . . . . . . . . . . 16

1.2 Diameter of the Sun compared with the Moon’s orbital diameter . . . . . . . . 19

1.3 Sun to near galactic space in three segments . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Notional round trip to space destination from Earth involving four plus and

minus accelerations used to establish mission mass ratios . . . . . . . . . . . . . . 23

1.5 Required specific impulse as a function of spacecraft speed with some

projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 One way distance and travel time in Earth time . . . . . . . . . . . . . . . . . . . . . 28

2.1 A look to the future space infrastructure envisioned by Boris Gubanov and

Viktor Legostayev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 A Japanese look to the future space infrastructure based on their development

of an aerospace plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Aerospace plane concept from Japan National Aerospace Laboratories . . . . 40

2.4 International space plans as presented to the Space Advisory Council for the

Prime Minister of Japan in 1988. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Expendable vehicles are for pioneers to open up new frontiers and establish a

one way movement of people and resources. . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Sustained use vehicle industries used to open up new economic frontiers and

establish scheduled, regular, sustained two way flows of people and resources 42

2.7 The conventional path for launcher development . . . . . . . . . . . . . . . . . . . . 43

2.8 ‘‘Soyuz’’ launch with ‘‘Progress’’ re supply capsule . . . . . . . . . . . . . . . . . . . 45

2.9 Proton first stage in Moscow plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Energia was an approach to achieve a fully reusable, extended life launcher . 47

2.11 A model of the ‘‘Energia’’ showing the strap on booster parachute packs and

cylindrical payload container and the Buran space plane on the Baikonur

launch complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.12 Fly back version of the strap on as an alternative to lifting parachutes . . . . 49

2.13 Buran after landing on its first, last, and only flight . . . . . . . . . . . . . . . . . . 51

2.14 Total vehicle energy approaches a constant . . . . . . . . . . . . . . . . . . . . . . . . 52

2.15 Adding the weight history shows the differentiation of the propulsion systems in

terms of initial weight and the convergence to a single on orbit value . . . . . 53

2.16 The rocket advocate’s vision of launchers that fly regularly to space . . . . . . 54

2.17 A balanced vision of launchers that fly regularly to space . . . . . . . . . . . . . . 54

2.18 Airbreather/rocket, single stage to orbit configuration and a rocket derived

hypersonic glider, single stage to orbit configuration. . . . . . . . . . . . . . . . . . 55

2.19 Airbreather/rocket, two stage to orbit configuration with all rocket second

stage and an all rocket hypersonic glider, two stage to orbit configuration

with all rocket second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.20 Large aircraft based two stage to orbit configuration with a combined cycle

powered waverider second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.21 The result is that the potentials were never developed and impediments were

sufficient to prevent any further hardware development of a truly sustained use

space launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.22 Our current space infrastructure, but without MIR is limited to specific LEO

and GSO without significant intra orbit operations . . . . . . . . . . . . . . . . . . 59

2.23 One US look to the future space infrastructure that fully utilizes the space

potential by Dr William Gaubatz when director of the McDonnell Douglas

Astronautics Delta Clipper Program, circa 1999. . . . . . . . . . . . . . . . . . . . . 60

2.24 Waiting time is costly for commercial space operations. . . . . . . . . . . . . . . . 61

2.25 ‘‘Bud’’ Redding Space Cruiser launched from a trans atmospheric vehicle to

accomplish a satellite repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Comparison of payload costs to orbit, from 1971 to 2003 . . . . . . . . . . . . . . 70

3.2 Payload costs per pound based on fleet flight rate . . . . . . . . . . . . . . . . . . . 72

3.3 Weight ratio to achieve a 100 nautical mile orbit decrease as maximum

airbreathing Mach number increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 The less oxidizer carried, the lower the mass ratio . . . . . . . . . . . . . . . . . . . 74

3.5 Orbital velocity decreases as altitude increases.. . . . . . . . . . . . . . . . . . . . . . 76

3.6 Slower orbital speed means longer periods of rotation . . . . . . . . . . . . . . . . 77

3.7 To achieve a higher orbit requires additional propellant . . . . . . . . . . . . . . . 77

3.8 Space and atmospheric vehicle development converge. . . . . . . . . . . . . . . . . 80

3.9 Controlling drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10 Wetted area parameter from Figure 3.9 correlates with Ku¨chemann’s tau

yielding a geometric relationship to describe the delta planform configurations

of different cross sectional shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 Hypersonic rocket powered glider for airbreathing Mach <6 and hypersonic

combined cycle powered aircraft for airbreathing Mach >6 . . . . . . . . . . . . 84

3.12 Wind tunnel model configurations for tail effectiveness determination over

hypersonic to subsonic speed regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.13 BOR V after return from hypersonic test flight at Mach 22. . . . . . . . . . . . . 86

3.14 FDL 7 C/D compared with Model 176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 Model 176 in the McDonnell Douglas Hypervelocity Impulse Tunnel (circa

1964) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xvi Figures

Tải ngay đi em, còn do dự, trời tối mất!