Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Springer.Future.Spacecraft.Propulsion.Systems.2nd.Edition.Mar.2009.eBook-ELOHiM
Nội dung xem thử
Mô tả chi tiết
Future Spacecraft Propulsion Systems
Enabling Technologies for Space Exploration (Second Edition)
Paul A. Czysz and Claudio Bruno
Future Spacecraft
Propulsion Systems
Enabling Technologies for Space Exploration
(Second Edition)
Published in association with
Pr isax P gublishing
Chichester, UK
Professor Paul A. Czysz
Oliver L. Parks Endowed Chair in Aerospace Engineering
Parks College of Engineering and Aviation
St Louis University
St Louis
Missouri
USA
Professor Claudio Bruno
Dipartimento di Meccanica e Aeronautica
Universita` degli Studi di Roma
La Sapienza
Rome
Italy
SPRINGER PRAXIS BOOKS IN ASTRONAUTICAL ENGINEERING
SUBJECT ADVISORY EDITOR: John Mason, M.Sc., B.Sc., Ph.D.
ISBN 978-3-540-88813-0 Springer Berlin Heidelberg New York
Springer is part of Springer-Science + Business Media (springer.com)
Library of Congress Control Number: 2008939148
Apart from any fair dealing for the purposes of research or private study, or criticism
or review, as permitted under the Copyright, Designs and Patents Act 1988, this
publication may only be reproduced, stored or transmitted, in any form or by any
means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.
First Edition published 2006
# Praxis Publishing Ltd, Chichester, UK, 2009
Printed in Germany
The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore free
for general use.
Cover design: Jim Wilkie
Project management: OPS, Gt Yarmouth, Norfolk, UK
Printed on acid-free paper
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of tables ......................................... xxiii
Introduction .......................................... 1
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 The challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1 Historical developments . . . . . . . . . . . . . . . . . . . . . . 12
1.2 The challenge of flying to space . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Operational requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Operational space distances, speed, and times . . . . . . . . . . . . . 18
1.5 Implied propulsion performance . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Propulsion concepts available for Solar System exploration . . . . 28
1.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Our progress appears to be impeded . . . . . . . . . . . . . . . . . . . . . . . 35
2.1 Meeting the challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Early progress in space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Historical analogues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Evolution of space launchers from ballistic missiles . . . . . . . . . 43
2.5 Conflicts between expendable rockets and reusable airbreathers . 52
2.6 Commercial near-Earth launchers enable the first step . . . . . . . 59
2.6.1 On-orbit operations in near-Earth orbit: a necessary
second step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.2 Earth–Moon system advantages: the next step to establishing a Solar System presence . . . . . . . . . . . . . . . . . 65
2.6.3 The need for nuclear or high-energy space propulsion, to
explore the Solar System . . . . . . . . . . . . . . . . . . . . . 65
2.6.4 The need for very-high-energy space propulsion: expanding our knowledge to nearby Galactic space. . . . . . . . . 66
2.6.5 The need for light speed–plus propulsion: expanding our
knowledge to our Galaxy . . . . . . . . . . . . . . . . . . . . . 66
2.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3 Commercial near-Earth space launcher: a perspective . . . . . . . . . . . . . 69
3.1 Energy, propellants, and propulsion requirements . . . . . . . . . . 73
3.2 Energy requirements to change orbital altitude . . . . . . . . . . . . 75
3.3 Operational concepts anticipated for future missions. . . . . . . . . 78
3.4 Configuration concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5 Takeoff and landing mode. . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6 Available solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4 Commercial near-Earth launcher: propulsion. . . . . . . . . . . . . . . . . . . 105
4.1 Propulsion system alternatives . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Propulsion system characteristics . . . . . . . . . . . . . . . . . . . . . 108
4.3 Airflow energy entering the engine . . . . . . . . . . . . . . . . . . . . 109
4.4 Internal flow energy losses. . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 Spectrum of airbreathing operation . . . . . . . . . . . . . . . . . . . . 120
4.6 Design space available—interaction of propulsion and materials/
structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.7 Major sequence of propulsion cycles . . . . . . . . . . . . . . . . . . . 127
4.8 Rocket-derived propulsion. . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.9 Airbreathing rocket propulsion. . . . . . . . . . . . . . . . . . . . . . . 135
4.10 Thermally integrated combined cycle propulsion . . . . . . . . . . . 138
4.11 Engine thermal integration . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.12 Total system thermal integration . . . . . . . . . . . . . . . . . . . . . 142
4.13 Thermally integrated enriched air combined cycle propulsion . . . 147
4.14 Comparison of continuous operation cycles . . . . . . . . . . . . . . 150
4.15 Conclusions with respect to continuous cycles . . . . . . . . . . . . . 156
4.16 Pulse detonation engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.16.1 What is a pulse detonation engine?. . . . . . . . . . . . . . . 158
4.16.2 Pulse detonation engine performance . . . . . . . . . . . . . 159
4.17 Conclusions with respect to pulse detonation cycles . . . . . . . . . 165
4.18 Comparison of continuous operation and pulsed cycles. . . . . . . 166
4.19 Launcher sizing with different propulsion systems . . . . . . . . . . 170
4.20 Structural concept and structural index, ISTR. . . . . . . . . . . . . 172
4.21 Sizing results for continuous and pulse detonation engines. . . . . 174
4.22 Operational configuration concepts, SSTO and TSTO. . . . . . . . 179
vi Contents
4.23 Emerging propulsion system concepts in development. . . . . . . . 185
4.24 Aero-spike nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.25 ORBITEC vortex rocket engine . . . . . . . . . . . . . . . . . . . . . 196
4.25.1 Vortex hybrid rocket engine (VHRE) . . . . . . . . . . . . . 197
4.25.2 Stoichiometric combustion rocket engine (SCORE) . . . . 199
4.25.3 Cryogenic hybrid rocket engine technology . . . . . . . . . 200
4.26 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5 Earth orbit on-orbit operations in near-Earth orbit, a necessary second
step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.1 Energy requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.1.1 Getting to low Earth orbit: energy and propellant requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.2 Launcher propulsion system characteristics . . . . . . . . . . . . . . . 216
5.2.1 Propellant ratio to deliver propellant to LEO . . . . . . . . 216
5.2.2 Geostationary orbit satellites sizes and mass. . . . . . . . . 220
5.3 Maneuver between LEO and GEO, change in altitude at same
orbital inclination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.3.1 Energy requirements, altitude change . . . . . . . . . . . . . 223
5.3.2 Mass ratio required for altitude change . . . . . . . . . . . . 223
5.3.3 Propellant delivery ratio for altitude change . . . . . . . . . 228
5.4 Changes in orbital inclination . . . . . . . . . . . . . . . . . . . . . . . 230
5.4.1 Energy requirements for orbital inclination change . . . . 231
5.4.2 Mass ratio required for orbital inclination change . . . . . 234
5.4.3 Propellant delivery ratio for orbital inclination change . . 237
5.5 Representative space transfer vehicles . . . . . . . . . . . . . . . . . . 240
5.6 Operational considerations . . . . . . . . . . . . . . . . . . . . . . . . . 242
5.6.1 Missions per propellant delivery. . . . . . . . . . . . . . . . . 243
5.6.2 Orbital structures . . . . . . . . . . . . . . . . . . . . . . . . . . 244
5.6.3 Orbital constellations. . . . . . . . . . . . . . . . . . . . . . . . 245
5.6.4 Docking with space facilities and the International Space
Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
5.6.5 Emergency rescue vehicle with capability to land within
continental United States . . . . . . . . . . . . . . . . . . . . . 252
5.7 Observations and recommendations. . . . . . . . . . . . . . . . . . . . 252
5.8 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
6 Earth–Moon system: establishing a Solar System presence . . . . . . . . . 255
6.1 Earth–Moon characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.2 Requirements to travel to the Moon . . . . . . . . . . . . . . . . . . . 259
6.2.1 Sustained operation lunar trajectories . . . . . . . . . . . . . 262
6.2.2 Launching from the Moon surface . . . . . . . . . . . . . . . 263
6.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.3.1 USSR exploration history . . . . . . . . . . . . . . . . . . . . 268
6.3.2 USA exploration history. . . . . . . . . . . . . . . . . . . . . . 269
Contents vii
6.3.3 India exploration history . . . . . . . . . . . . . . . . . . . . . 270
6.3.4 Japan exploration history . . . . . . . . . . . . . . . . . . . . . 270
6.4 Natural versus artificial orbital station environments . . . . . . . . 270
6.4.1 Prior orbital stations . . . . . . . . . . . . . . . . . . . . . . . . 271
6.4.2 Artificial orbital station . . . . . . . . . . . . . . . . . . . . . . 271
6.4.3 Natural orbital station . . . . . . . . . . . . . . . . . . . . . . . 274
6.5 Moon base functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.5.1 Martian analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.5.2 Lunar exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.5.3 Manufacturing and production site. . . . . . . . . . . . . . . 280
6.6 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Patent literature on MagLev . . . . . . . . . . . . . . . . . . . . . . . . 282
Websites on MagLev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7 Exploration of our Solar System . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.1 Review of our Solar System distances, speeds, and propulsion
requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
7.2 Alternative energy sources: nuclear energy . . . . . . . . . . . . . . . 288
7.3 Limits of chemical propulsion and alternatives . . . . . . . . . . . . 292
7.3.1 Isp and energy sources . . . . . . . . . . . . . . . . . . . . . . . 293
7.3.2 The need for nuclear (high-energy) space propulsion . . . 296
7.4 Nuclear propulsion: basic choices . . . . . . . . . . . . . . . . . . . . . 297
7.4.1 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.5 Nuclear propulsion: a historical perspective . . . . . . . . . . . . . . 307
7.6 Nuclear propulsion: current scenarios . . . . . . . . . . . . . . . . . . 314
7.7 Nuclear reactors: basic technology . . . . . . . . . . . . . . . . . . . . 322
7.8 Solid core NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
7.9 Particle bed reactor NTR . . . . . . . . . . . . . . . . . . . . . . . . . . 327
7.10 CERMET technology for NTR . . . . . . . . . . . . . . . . . . . . . . 329
7.11 MITEE NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
7.12 Gas core NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
7.13 C. Rubbia’s engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.14 Considerations about NTR propulsion. . . . . . . . . . . . . . . . . . 339
7.15 Nuclear electric propulsion . . . . . . . . . . . . . . . . . . . . . . . . . 340
7.16 Nuclear arcjet rockets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
7.17 Nuclear electric rockets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
7.18 Electrostatic (ion) thrusters . . . . . . . . . . . . . . . . . . . . . . . . . 343
7.19 MPD thrusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
7.20 Hybrid/combined NTR/NER engines . . . . . . . . . . . . . . . . . . 351
7.21 Inductively heated NTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
7.22 VASIMR (variable specific impulse magneto-plasma-dynamic
rocket) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.23 Combining chemical and nuclear thermal rockets. . . . . . . . . . . 359
7.24 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
7.25 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
viii Contents
8 Stellar and interstellar precursor missions . . . . . . . . . . . . . . . . . . . . 375
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
8.1.1 Quasi-interstellar destinations . . . . . . . . . . . . . . . . . . 377
8.1.2 Times and distance . . . . . . . . . . . . . . . . . . . . . . . . . 381
8.2 The question of Isp, thrust, and power for quasi-interstellar and
stellar missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
8.3 Traveling at relativistic speeds . . . . . . . . . . . . . . . . . . . . . . . 387
8.4 Power sources for quasi-interstellar and stellar propulsion . . . . . 390
8.5 Fusion and propulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
8.5.1 Mission length with Isp possible with fusion propulsion . 393
8.6 Fusion propulsion: fuels and their kinetics . . . . . . . . . . . . . . . 395
8.7 Fusion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
8.8 Fusion propulsion reactor concepts. . . . . . . . . . . . . . . . . . . . 400
8.9 MCF reactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
8.10 Mirror MCF rockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
8.10.1 Tokamak MCF rockets . . . . . . . . . . . . . . . . . . . . . . 406
8.10.2 An unsteady MCF reactor: the dense plasma focus (DPF)
rocket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
8.10.3 Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
8.10.4 Direct thermal MCF vs. electric MCF rockets . . . . . . . 411
8.11 Fusion propulsion—inertial confinement. . . . . . . . . . . . . . . . . 413
8.11.1 Inertial electrostatic confinement fusion . . . . . . . . . . . . 419
8.12 MCF and ICF fusion: a comparison . . . . . . . . . . . . . . . . . . . 420
8.13 Conclusions: Can we reach stars? . . . . . . . . . . . . . . . . . . . . . 428
8.14 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
9 View to the future and exploration of our Galaxy . . . . . . . . . . . . . . . 437
9.1 Issues in developing near- and far-galactic space exploration . . . 439
9.2 Black holes and galactic travel . . . . . . . . . . . . . . . . . . . . . . . 447
9.3 Superluminal speed: Is it required? . . . . . . . . . . . . . . . . . . . . 453
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
9.5 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Appendix A Nuclear propulsion—risks and dose assessment. . . . . . . . . . . 463
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
A.2 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
A.2.1 Alpha decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
A.2.2 Beta decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
A.2.3 Gamma rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
A.3 Radiation and dose quantities and units . . . . . . . . . . . . . . . . 465
A.3.1 Activity (Bq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
A.3.2 Half-life (s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
A.3.3 Absorbed dose, D (Gy) . . . . . . . . . . . . . . . . . . . . . . 466
A.3.4 Equivalent dose, H (Sv) . . . . . . . . . . . . . . . . . . . . . . 466
A.3.5 Effective dose, E (Sv) . . . . . . . . . . . . . . . . . . . . . . . 468
Contents ix
A.3.6 Collective dose (man Sv) . . . . . . . . . . . . . . . . . . . . . 468
A.3.7 Dose commitment (Sv). . . . . . . . . . . . . . . . . . . . . . . 469
A.4 Effects of ionizing radiation. . . . . . . . . . . . . . . . . . . . . . . . . 469
A.4.1 Deterministic effects. . . . . . . . . . . . . . . . . . . . . . . . . 469
A.4.2 Stochastic effects. . . . . . . . . . . . . . . . . . . . . . . . . . . 470
A.5 Sources of radiation exposure . . . . . . . . . . . . . . . . . . . . . . . 473
A.5.1 Natural radiation exposure . . . . . . . . . . . . . . . . . . . . 473
A.5.2 Medical radiation exposure . . . . . . . . . . . . . . . . . . . . 476
A.5.3 Exposure from atmospheric nuclear testing . . . . . . . . . 477
A.5.4 Exposure from nuclear power production . . . . . . . . . . 478
A.5.5 Exposure from major accidents . . . . . . . . . . . . . . . . . 479
A.5.6 Occupational exposure . . . . . . . . . . . . . . . . . . . . . . . 480
A.5.7 Exposure from nuclear propulsion systems. . . . . . . . . . 480
A.5.8 Comparison of exposures . . . . . . . . . . . . . . . . . . . . . 483
A.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
A.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
Appendix B Assessment of open magnetic fusion for space propulsion . . . . 487
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
B.2 Space fusion power: general issues . . . . . . . . . . . . . . . . . . . . 490
B.2.1 Application of fusion for space propulsion . . . . . . . . . 492
B.2.2 Achievement of self-sustained conditions . . . . . . . . . . 493
B.2.3 Design of a generic fusion propulsion system . . . . . . . 495
B.2.4 Mass budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
B.2.5 Specific power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
B.2.6 Fusion power density . . . . . . . . . . . . . . . . . . . . . . . 502
B.2.7 Specific power : summary . . . . . . . . . . . . . . . . . . . 503
B.3 Status of open magnetic field configuration research. . . . . . . . . 504
B.3.1 Classification and present status of open magnetic field
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
B.3.2 Mirror configurations. . . . . . . . . . . . . . . . . . . . . . . . 505
B.3.3 Field-reversed configurations . . . . . . . . . . . . . . . . . . . 517
B.3.4 Spheromaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
B.3.5 Levitated dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
B.4 Further studies on fusion for space application . . . . . . . . . . . . 532
B.4.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
B.4.2 Specific design studies . . . . . . . . . . . . . . . . . . . . . . . 534
B.5 Fusion propulsion performance . . . . . . . . . . . . . . . . . . . . . . 534
B.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
B.7 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
x Contents
Preface
Humankind has been dreaming of traveling to space for a long time. Jules Verne
thought we could reach the moon with a giant cannon in the 1800s. In the early
1960s there was a dedicated push to develop the vehicle configurations that would
permit us to travel to space, and back through the atmosphere, as readily and
conveniently as flying on an airliner to another continent and back. That idea, or
intuition, was necessarily coupled with advanced propulsion system concepts, that
relied on capturing the oxygen within our atmosphere instead of carrying it onboard
from the ground up, as rockets developed in Germany in the 1940s did, and as satellite
launchers still do. During the 1960s the concept of space travel extended beyond our
planet, to our Solar System and the Galaxy beyond (see Chapter 1), using power
sources other than chemical, such as fission and fusion. Not much is left nowadays of
those dreams, except our present capability to build those advanced propulsion
systems.
Traveling to space in the foreseeable future is a multi-step process. The first step is
to achieve a two-way transport to and from orbit around our Earth, that is, a Low
Earth Orbit (LEO), see Chapters 2, 4 and 5. This is a critical first step as it is the key to
moving away from our Earth environment. For any future development in space,
travel that transits to and from LEO must be frequent and affordable. From a vision of
spacecraft parked in LEOs there are then several options. One is a Geo-Synchronous
Orbit or Geo-Stationary Orbit (GSO) that is at an altitude of 35,853 km (22,278
statute miles) and has an equatorial orbital period of 24 hours, so it is stationary over
any fixed point on Earth. Another option for the next step is an elliptical transfer orbit
to the Moon. The orbital speed to reach the Moon is less than the speed to escape
Earth’s orbit, so the transfer orbit is elliptical, and requires less energy to accomplish
(but more logistics) than reaching GSO. Depending on the specific speed selected, the
time to reach the Moon is between 100 to 56 hours. In fact, the Apollo program
selected a speed corresponding to a 72-hour travel time from LEO to the vicinity of the
Moon (see Chapter 6): in terms of the time needed to reach it, the Moon is truly
close to us. All circular and elliptical orbits are, mathematically speaking, closed
conics.
Another and far more eventful option is to achieve escape speed, that is a factor
square root of two faster than orbital speed. At escape speed and faster the spacecraft
trajectory is an open conic (i.e., a parabola or hyperbola), and there is no longer a
closed path returning the spacecraft to Earth. So now we can move away from the
gravitational control of Earth (not from gravity!) and proceed to explore our Solar
System and beyond. However, after taking such a step, there is a challenge of time,
distance and propulsion as we proceed farther and farther to explore our Solar
System, then nearby Galactic space and finally our Galaxy. Exploring beyond our
Galaxy is technically beyond our current or projected capabilities. In order to achieve
travel beyond our Galaxy our current understanding of thrust, mass, inertia and time
will have to be different (see Chapters 8 and 9). Mass/inertia may be the most
challenging. An article by Gordon Kane in the July 2005 Scientific American entitled
‘‘The Mysteries of Mass’’ explains our current understanding of what we call mass.
From another paper presented by Theodore Davis at the 40th Joint Propulsion
Conference [Davis, 2004] we have the following statement:
‘‘E ¼ mc2 is the expression of mass–energy equivalence and applies to all forms
of energy. That includes the energy of motion or kinetic energy. The faster an
object is going relative to another object, the greater the kinetic energy. According to Einstein mass and energy are equivalent, therefore the extra energy
associated with the object’s inertia manifests itself in the same way mass manifests itself ... As a result, the kinetic energy adds to the object’s inertial component and adds resistance to any change in the objects motion. In other words,
both energy and mass have inertia.’’
Inertia is a resistance to change in speed or direction. As we approach light speed, the
inertia/mass approaches infinity. As the mass approaches infinity the thrust required
to maintain constant acceleration also approaches infinity. Thus, at this point we do
not know how to exceed the speed of light. If that remains the case, we are trapped
within the environs of our Solar System.
There is a second major issue. Human tolerance to a continuous acceleration for
long periods has yet to be quantified. Nominally that is considered about three times
the surface acceleration of gravity. At that rate of acceleration the time to reach a
distant destination is numerically on the same order as the distance in light years. So if
a crewed spacecraft is to return to Earth within the lifetime of its occupants, we are
again limited to 20 light years of so. That is within the distance to the seven or eight
closest stars to our star, the Sun.
As much as the authors would hope to travel in Galactic space, it will require a
breakthrough in our understanding of mass, acceleration and propulsion. Until that
time we have much to explore and discover within the environs of our Solar System.
Coming down from Galactic space to intelligent life on Earth, the authors would
like to acknowledge the contributions of Elena and David Bruno, Catherine Czysz, Dr
Babusci at the INFN (Italian Nuclear Physics Institute), Dr Romanelli at the ENEA
xii Preface
Fusion Laboratories, Mr Simone, GS, H. David Froning, Gordon Hamilton,
Dr Christopher P. Rahaim and Dr John Mason, Praxis Subject Advisory Editor.
Special thanks go to Clive Horwood of Praxis, for his patience, constant encouragement, and prodding, without which writing this book would have taken much longer.
Paul A. Czysz and Claudio Bruno
Preface xiii
Figures
1 (Introduction) Andromeda Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 (Introduction) MIRLIN (Mid Infrared Large Well Imager) image of the black
hole at the center of the Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 (Introduction) Habitable zones of life and Earth like solar systems . . . . . . . 7
4 (Introduction) Two scramjet powered space launchers for approximately Mach
12 airbreather operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Spectrum of launchers/spacecraft from 1956 to 1981 . . . . . . . . . . . . . . . . . 16
1.2 Diameter of the Sun compared with the Moon’s orbital diameter . . . . . . . . 19
1.3 Sun to near galactic space in three segments . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Notional round trip to space destination from Earth involving four plus and
minus accelerations used to establish mission mass ratios . . . . . . . . . . . . . . 23
1.5 Required specific impulse as a function of spacecraft speed with some
projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 One way distance and travel time in Earth time . . . . . . . . . . . . . . . . . . . . . 28
2.1 A look to the future space infrastructure envisioned by Boris Gubanov and
Viktor Legostayev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 A Japanese look to the future space infrastructure based on their development
of an aerospace plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Aerospace plane concept from Japan National Aerospace Laboratories . . . . 40
2.4 International space plans as presented to the Space Advisory Council for the
Prime Minister of Japan in 1988. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Expendable vehicles are for pioneers to open up new frontiers and establish a
one way movement of people and resources. . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 Sustained use vehicle industries used to open up new economic frontiers and
establish scheduled, regular, sustained two way flows of people and resources 42
2.7 The conventional path for launcher development . . . . . . . . . . . . . . . . . . . . 43
2.8 ‘‘Soyuz’’ launch with ‘‘Progress’’ re supply capsule . . . . . . . . . . . . . . . . . . . 45
2.9 Proton first stage in Moscow plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.10 Energia was an approach to achieve a fully reusable, extended life launcher . 47
2.11 A model of the ‘‘Energia’’ showing the strap on booster parachute packs and
cylindrical payload container and the Buran space plane on the Baikonur
launch complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 Fly back version of the strap on as an alternative to lifting parachutes . . . . 49
2.13 Buran after landing on its first, last, and only flight . . . . . . . . . . . . . . . . . . 51
2.14 Total vehicle energy approaches a constant . . . . . . . . . . . . . . . . . . . . . . . . 52
2.15 Adding the weight history shows the differentiation of the propulsion systems in
terms of initial weight and the convergence to a single on orbit value . . . . . 53
2.16 The rocket advocate’s vision of launchers that fly regularly to space . . . . . . 54
2.17 A balanced vision of launchers that fly regularly to space . . . . . . . . . . . . . . 54
2.18 Airbreather/rocket, single stage to orbit configuration and a rocket derived
hypersonic glider, single stage to orbit configuration. . . . . . . . . . . . . . . . . . 55
2.19 Airbreather/rocket, two stage to orbit configuration with all rocket second
stage and an all rocket hypersonic glider, two stage to orbit configuration
with all rocket second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.20 Large aircraft based two stage to orbit configuration with a combined cycle
powered waverider second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.21 The result is that the potentials were never developed and impediments were
sufficient to prevent any further hardware development of a truly sustained use
space launcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.22 Our current space infrastructure, but without MIR is limited to specific LEO
and GSO without significant intra orbit operations . . . . . . . . . . . . . . . . . . 59
2.23 One US look to the future space infrastructure that fully utilizes the space
potential by Dr William Gaubatz when director of the McDonnell Douglas
Astronautics Delta Clipper Program, circa 1999. . . . . . . . . . . . . . . . . . . . . 60
2.24 Waiting time is costly for commercial space operations. . . . . . . . . . . . . . . . 61
2.25 ‘‘Bud’’ Redding Space Cruiser launched from a trans atmospheric vehicle to
accomplish a satellite repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.1 Comparison of payload costs to orbit, from 1971 to 2003 . . . . . . . . . . . . . . 70
3.2 Payload costs per pound based on fleet flight rate . . . . . . . . . . . . . . . . . . . 72
3.3 Weight ratio to achieve a 100 nautical mile orbit decrease as maximum
airbreathing Mach number increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 The less oxidizer carried, the lower the mass ratio . . . . . . . . . . . . . . . . . . . 74
3.5 Orbital velocity decreases as altitude increases.. . . . . . . . . . . . . . . . . . . . . . 76
3.6 Slower orbital speed means longer periods of rotation . . . . . . . . . . . . . . . . 77
3.7 To achieve a higher orbit requires additional propellant . . . . . . . . . . . . . . . 77
3.8 Space and atmospheric vehicle development converge. . . . . . . . . . . . . . . . . 80
3.9 Controlling drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.10 Wetted area parameter from Figure 3.9 correlates with Ku¨chemann’s tau
yielding a geometric relationship to describe the delta planform configurations
of different cross sectional shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.11 Hypersonic rocket powered glider for airbreathing Mach <6 and hypersonic
combined cycle powered aircraft for airbreathing Mach >6 . . . . . . . . . . . . 84
3.12 Wind tunnel model configurations for tail effectiveness determination over
hypersonic to subsonic speed regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.13 BOR V after return from hypersonic test flight at Mach 22. . . . . . . . . . . . . 86
3.14 FDL 7 C/D compared with Model 176 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.15 Model 176 in the McDonnell Douglas Hypervelocity Impulse Tunnel (circa
1964) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
xvi Figures