Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Lý thuyết chia hết và chia có dư.doc
Nội dung xem thử
Mô tả chi tiết
1 Hà Văn Tùng
CÁC BÀI TẬP
I. QUAN HỆ CHIA HẾT:
1. BÀI 1:
Chứng minh rằng trong hai số tự nhiên liên tiếp có một số chia hết cho 2.
Giải
Gọi hai số tự nhiên liên tiếp là : a, a +1
Lấy a chia cho 2 ta được: a = 2.q + r với 0 ≤ r < 2.
+ Với r = 0 thì a = 2.q 2
+ Với r = 1 thì a + 1 = 2.q + 1 + 1 = 2.q + 2 = 2( q + 1) 2
Vậy trong hai số tự nhiên liên tiếp có một số chia hết cho 2.
2. BÀI 2:
Chứng minh rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
Giải
Gọi ba số tự nhiên liên tiếp là : a, a +1 , a +2
Lấy a chia cho 3 ta được: a = 2.q + r với 0 ≤ r < 3.
+ Với r = 0 thì a = 3.q 3
+ Với r = 1 thì a = 3.q + 1 . Khi đó : a + 2 = 3.q + 3 3
+ Với r = 2 thì a = 3.q + 2 . Khi đó a + 1 = 3.q + 3 3
Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
3. BÀI 3:
Chứng minh rằng trong n số tự nhiên liên tiếp có một số chia hết cho n.
Giải
Gọi n số tự nhiên liên tiếp là : a, a +1 , a +2 …a( n-1)
Lấy a chia cho n ta được: a = n.q + r với 0 ≤ r < n.
+ Với r = 0 thì a = n.q n
+ Với r = 1 thì a = n.q + 1 n . Khi đó : a+ (n-1) = n.q + 1 + (n-1) = n.q + n n
+ Với r = 2 thì a = n.q + 2 n. Khi đó a + (n-2) = n.q + 2 + (n+-2) = n.q + n n
+ Với r = n-1 thì a = n.q + n - 1 n . Khi đó a + 1 = n.q + n-1 +1= n.q + n n
Vậy trong n số tự nhiên liên tiếp có một số chia hết cho n.
*Một số phương pháp chứng minh chia hết
4. BÀI 4
Tính chất 8:
CMR tích của ba số tự nhiên liên tiếp chia hết cho 6
Giải
Giả sử ta gọi ba số tự nhiên liên tiếp là: a, a+1, a + 2
Theo đề bài : A = a( a +1) ( a + 2) 6
Ta có : 6 = 3x2 mà ( 3, 2) =1
- A 2 vì trong A số tự nhiên liên tiếp có một số tự nhiên chia hết cho 2
- A 3 vì trong A số tự nhiên liên tiếp có một số tự nhiên chia hết cho 3
Vậy A 6
5. BÀI 5
CMR tích của ba số chẵn liên tiếp chia hết cho 8
Giải
Giả sử hai số tự nhiên chẵn liên tiếp là: 2k , 2k + 2.