Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Kỹ thuật giải nhanh chương điện xoay chiều pot
PREMIUM
Số trang
100
Kích thước
1.8 MB
Định dạng
PDF
Lượt xem
966

Kỹ thuật giải nhanh chương điện xoay chiều pot

Nội dung xem thử

Mô tả chi tiết

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

1

(DÙNG CHO ÔN THI TN – CA – AH 2011)

G穎i t員ng: www.Mathvn.com

B雨m s挨n. 10.04.2011

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

2

BÀI TOÁN 1: TÍNH CÁC A萎I L姶営NG A咽C TR姶NG C曳A DÒNG AI烏N XOAY

CHI陰U

D衣ng 1: Dòng đi羽n xoay chi隠u và hi羽u đi羽n th院 xoay chi隠u trong các lo衣i đo衣n m衣ch:

* Ao衣n m衣ch ch雨 có đi羽n tr荏 thu亥n R: R

u cùng pha v噂i i, 0    u i    :

U

I

R

 và 0

0

U

I

R

L⇔u ý: Ai羽n tr荏 R cho dòng đi羽n không đ鰻i đi qua và có U

I

R

* Ao衣n m衣ch ch雨 có cu瓜n thu亥n c違m L: L

u nhanh pha h挨n i là ,

2 2 u i

 

      :

L

U

I

Z

 và 0

0

L

U

I

Z

v噂i ZL = L là c違m kháng

L⇔u ý: Cu瓜n thu亥n c違m L cho dòng đi羽n không đ鰻i đi qua hoàn toàn (không c違n tr荏).

* Ao衣n m衣ch ch雨 có t映 đi羽n C: C

u ch壱m pha h挨n i là ,

2 2 u i

 

       :

C

U

I

Z

 và 0

0

C

U

I

Z

v噂i 1

ZC C

 là dung kháng.

L⇔u ý: T映 đi羽n C không cho dòng đi羽n không đ鰻i đi qua (c違n tr荏 hoàn toàn).

Chú ý: V噂i m衣ch ho員c ch雨 ch泳a L, ho員c ch雨 ch泳a C, ho員c ch泳a LC không tiêu th映 công su医t ( P  0 )

0 0

0 0

cos cos( )

cos cos( - ) u i u i i u

Neu i I t thi u U t

Voi

Neu u U t thi i I t

  

   

  

   

    

  

AoTn mTch Aおnh luft Ôm cho đoTn

mTch

Quan hう giのa u và i – Giãn đげ

vecto

Chú ý

Chえ có R

.

R

R

U

I U I R

R

   R

u luôn đげng pha i

( 0)  R 

UR

điうn áp hiうu dつng

ぞ hai đZu điうn trぞ R

0

0

0 0.

 

R

R

U

I

R

U I R

Cuじn dây

thuZn cVm

chえ có L

.

L

L L

L

U

I U I Z

Z

  

*Vずi cVm kháng:

. ( ) Z L L   

* Chú ý: Nxu cuじn không

thuZn cVm ( có điうn trぞ

thuân RL

)

2 2 Z R Z daây   L L

L

u luôn nhanh pha so vずi i góc

2

 ( ) 2

L    UL

điうn áp hiうu dつng

ぞ hai đZu cuじn thuZn

cVm L

0

0

0 0.

 

L

L

L L

U

I

Z

U I Z

Chえ có C

.

C

C C

C

U

I U I Z

Z

  

Vずi dung kháng

L

u luôn chfm pha so vずi i góc

2

 ( ) 2

C   

UC

điうn áp hiうu dつng

ぞ hai đZu tつ C

0

0

0 0.

 

C

C

C C

U

I

Z

U I Z

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

3

1

( )

.

ZC

 C

 

RLC nぐi

tixp

.

U

I U I Z

Z

  

Vずi tごng trぞ cてa mTch:

2 2 ( ) ( )         Z R Z Z L C

* Chú ý: Nxu cuじn không

thuZn cVm ( có điうn trぞ

thuân RL

)

2 2 ( ) ( ) Z R R Z Z     L L C

GiV sぬ: U U Z Z L C L C   

* Aじ lうch pha cてa u so vずi i:

i

u u

i

      

       

 

L C L C

R

U U Z Z

tg

U R

+ N院u   0 u sôùm pha hôn i

  Z Z L C mTch có tính cVm

kháng

+N院u   0 u chaäm pha hôn i

  Z Z L C mTch có tính dung

kháng

+N院u   0 u cuøng pha vôùi i

  Z Z L C mTch có thuZn trぞ.

0

0

0 0.

 

U

I

Z

U I Z

Vずi:

0

0

2

2

I

I

vaø U

U

+ N院u các đi羽n tr荏 đ逢嬰c ghép thành b瓜 ta có:

Ghép n嘘i ti院p các đi羽n tr荏 Ghép song song các đi羽n tr荏

1 2 ... R R R Rn    

Ta nh壱n th医y đi羽n tr荏 t逢挨ng đ逢挨ng c栄a m衣ch

khi đó l噂n h挨n đi羽n tr荏 thành ph亥n. Ngh┄a là :

Rb > R1, R2…

1 2

1 1 1 1

...

R R R Rn

   

Ta nh壱n th医y đi羽n tr荏 t逢挨ng đ逢挨ng c栄a m衣ch

khi đó nh臼 h挨n đi羽n tr荏 thành ph亥n. Ngh┄a là :

Rb < R1, R2

Ghép n嘘i ti院p các t映 đi羽n Ghép song song các t映 đi羽n

1 2

1 1 1 1

...

C C C Cn

   

Ta nh壱n th医y đi羽n dung t逢挨ng đ逢挨ng c栄a m衣ch

1 2 ... C C C C     n

Ta nh壱n th医y đi羽n dung t逢挨ng đ逢挨ng c栄a m衣ch

khi đó l噂n h挨n đi羽n dung c栄a các t映 thành

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

4

khi đó nh臼 h挨n đi羽n dung c栄a các t映 thành

ph亥n. Ngh┄a là : Cb < C1, C2…

ph亥n. Ngh┄a là : Cb > C1, C2…

Lo衣i 1: Xác đ鵜nh giá tr鵜 các ph亥n t穎 R, L, C, f có trong đo衣n m衣ch không phân

Ph逢挨ng pháp:

D詠a vào các d英 kiên đã cho tính giá tri t鰻ng tr荏 Z c栄a đo衣n m衣ch đang xét r欝i s穎 d映ng công th泳c

2 2

( ) Z  R  ZL  ZC n院u m衣ch có thêm r thì 2 2 ( ) ( ) Z R r Z Z     L C . T瑛 đó suy ra: , , Z Z R L C c亥n

tìm.

D英 ki羽n đ隠 cho S穎 d映ng công th泳c Chú ý

C逢運ng đ瓜 hi羽u d映ng I và hi隠u

đi羽n th院 1

1

L R r C

L C

U U U U U U

I

Z Z Z R r Z

     

Cho n d英 ki羽n tìm đ逢嬰c

(n-1) 育n s嘘

Cho đ瓜 l羽ch pha

u

i

 ho員c

cho u

và i

thì

u u i

i

    

0 0

R 0R

tan

Z Z U U U U L C L C L C

R U U

  

   ho員c

R 0R

0

os

R U U

c

Z U U

    và sin Z Z L C

Z

 v噂i

2 2

 

   

N院u m衣ch có R và r thì :

R 0R 0

0

os

R r U Ur U U r

c

Z U U

  

  

tan

Z Z L C

R r

Th逢運ng tính

os

R

Z

c 

os

R r Z

c 

Công su医t P ho員c nhi羽t l逢嬰ng

Q

2

2

2 2 . os

( ) L C

RU P R I UIc

R Z Z

   

 

n院u có R và r thì:

2

2

2 2

( ) ( ). os

( ) ( ) L C

R r U P R r I UIc

R r Z Z

   

  

Th逢運ng s穎 d映ng đ吋 tính

P

I

R

 n院u có R và r thì

P

I

R r

r欝i áp d映ng

đ鵜nh lu壱t Ohm tính các tr荏

kháng c亥n tìm

Chú ý: Có th吋 s穎 d映ng công th泳c tr詠c ti院p đ吋 tính:

• Công su医t c栄a dòng đi羽n xoay chi隠u:

2 2 2

2 2 2 2

2

os ( ) R L C

U U U P UIc U I I R R Z R R Z Z R

Z P P

          

• Nhi羽t l逢嬰ng t臼a ra (Ai羽n n<ng tiêu th映) trong th運i gian t s( ): 2

  Q I R t  . .  

• H羽 s嘘 công su医t c h os oaëc   :

2

2 2 os ( )

. os os

R

L C

P R R R U

c Z R Z Z

U I U Z c c

 

 

            

• Ai羽n áp hi羽u d映ng 荏 hai đ亥u m厩i ph亥n t穎 đi羽n:

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

5

. ; . ; . U I R U I Z U I Z R L L C C    v噂i

.

.

.

R

L

L

C

C

U

Z R

U

U U I Z Z

Z U

U

Z Z

U

 

   

 

2

2 2 2

2

2 2 2

2

2 2 2

( )

( )

( )

L C

R

L C L

L

L C C

C

U

R Z Z R

U

U

R Z Z Z

U

U

R Z Z Z

U

            

  

         

        

  

Chú ý:

- T医t c違 các công th泳c sau khi đã đ逢嬰c bi院n đ鰻i nh逢 trên ta có th吋 đ逢a v隠 gi違i ph逢挨ng trình b壱c 2 ho員c

- A逢a v隠 d衣ng 2 2 A B  đ吋 gi違i.

- Hãy dùng công th泳c trên và áp d映ng cho m衣ch đi羽n trong bài toán. L壱p ra h羽 ph逢挨ng trình sau đó gi違i. C亥n

ph違i ngh┄ đ院n giãn đ欝 véc t挨 v胤 cho m衣ch đi羽n đó đ吋 b違o đ違m h羽 ph逢挨ng trình không b鵜 sai. Chú ý thêm tích

.

L C

L

Z Z

C

 . Khi bài toán cho các đi羽n áp hi羽u d映ng thành ph亥n và hai đ亥u m衣ch, cho công su医t tiêu th映

nh逢ng ch逢a cho dòng đi羽n thì hãy l壱p ph逢挨ng trình v噂i đi羽n áp hi羽u d映ng. Khi tìm ra UR s胤 tìm

R

P

I

U

 sau

đó tìm ; ; . R L C

L C

U U U

R Z Z

I I I

  

Bài t壱p tr逸c nghi羽m:

Câu 1: Hai cu瓜n dây   1 1 R L; và   2 2 R L; n嘘i ti院p vào m衣ch đi羽n xoay chi隠u. bi院t t雨 s嘘 1

2

2

R

R

 . Khi hi羽u

đi羽n th院 hi羽u d映ng gi英a hai đ亥u m衣ch b茨ng t鰻ng các hi羽u đi羽n th院 hi羽u d映ng c栄a hai cu瓜n dây thì t雨 s嘘 1

2

L

L

b茨ng giá tr鵜 nào sau đây.

A. 1

2

1

2

L

L

 . B. 1

2

4

L

L

 . C. 1

2

1

L

L

 . D. 1

2

2

L

L

Câu 2: M瓜t đèn có ghi (110V – 100W) m逸c n嘘i ti院p v噂i đi羽n tr荏 R vào m瓜t m衣ch đi羽n xoay chi隠u có

u  200 2 cos(100 )t (V). A吋 đèn sáng bình th逢運ng, R ph違i có giá tr鵜 b茨ng

A. 1210 . B. 10/11 . C. 121 . D. 99 .

Câu 3: Cho bi院t: R = 40, C F

4

10 5,2 

và:

80cos100 ( ) AM u t V   ;

7

200 2 cos(100 ) ( )

12 MB u t V 

  

r và L có giá tr鵜 là:

A. r L H

3

 100,  B.r L H

10 3

 10, 

R C L, r

M

A B

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

6

C.r L H

2

1

 50,  D.r L H

2

 50, 

Câu 4: Cho m衣ch đi羽n xoay chi隠u R và L m逸c n嘘i ti院p. Bi院t R = 4,5 , m衣ch đ員t d逢噂i hi羽u đi羽n th院 có bi吋u

th泳c là u = 110cos100 t(V). Giá tr鵜 c詠c đ衣i c栄a c逢運ng đ瓜 dòng đi羽n là I0 = 10A. A瓜 t詠 c違m c栄a cu瓜n dây là

A. L = 1/20 (H). B. L = 1/10 (H). C. L = 1/15 (H). D. K院t qu違 khác.

Câu 5: M瓜t cu瓜n dây d磯n đi羽n tr荏 không đáng k吋 đ逢嬰c cu瓜n d衣i và n嘘i vào m衣ng đi羽n xoay chi隠u 127V –

50Hz. Dòng đi羽n c詠c đ衣i qua nó b茨ng 10A. A瓜 t詠 c違m c栄a cu瓜n dây là

A. 0,04H. B. 0,08H. C. 0,057H. D. 0,114H.

Câu 6: Cho m衣ch đi羽n xoay chi隠u g欝m R, L m員c n嘘i ti院p. Hi羽u đi羽n th院 荏 2 đ亥u m衣ch có d衣ng

u

AB

= 100 2 sin100ヾt (V) và c逢運ng đ瓜 dòng đi羽n qua m衣ch có d衣ng i = 2sin(10ヾt -

3

)A. Giá tr鵜 c栄a R và

L là:

A. R = 25 2  , L =

61,0

H. B. R = 25 2 , L =

22,0

H.

C. R = 25 2 , L =

1

H. D. R = 50, L =

75,0

H.

Câu 7: N院u m逸c n嘘i ti院p đi羽n tr荏 R = 50っ v噂i cu瓜n dây thu亥n c違m có L = 1

2

H thì c逢運ng đ瓜 hi羽u d映ng

trong m衣ch là 2 A. N院u thay R b茨ng t映 đi羽n có đi羽n dung C thì c逢運ng đ瓜 dòng đi羽n t<ng lên 2 l亥n. Giá

tr鵜 c栄a đi羽n dung C là:

A. 4

10 4 

F B. 4

10

2

1 

F C. 4

10 1 

F D. 4

10

4

1 

F

Câu 8: Cho m衣ch đi羽n nh逢 hình, cu瓜n dây thu亥n c違m có đ瓜 t詠 c違m thay đ鰻i đ逢嬰c. A員t vào hai

đ亥u đo衣n m衣ch hi羽u đi羽n th院 AB u U 2 sin120 t(V)   , trong đó U là hi羽u đi羽n th院 hi羽u d映ng,

R = 30 3 . Bi院t khi L = 3

H

4

thì R

3

U U

2

 và m衣ch có tính dung kháng.

Ai羽n dung c栄a t映 đi羽n là:

A. 221F B. 0,221F

C. 2,21F D. 22,1F

Câu 9: Cho m衣ch nh逢 hình v胤: B L R C A

Cu瓜n dây thu亥n c違m

uAB = 220 2 cos100ヾt(V); C = F

3

103

, V2 ch雨 220 3 V; V1 ch雨 220V.

Ai羽n tr荏 các vôn k院 r医t l噂n. R và L có giá tr鵜:

A. 20 3 っ và

5

1

H B. 10 3 っ và

5

1

H

C. 10 3 っ và

1

H D. T医t c違 đ隠u sai

Câu 10: M衣ch nh逢 hình v胤 A R’,L’ N R,L B

uAB = 80 2 cos100 ヾt(V), R = 160 っ, ZL = 60 っ

Vôn k院 ch雨 UAN = 20V. Bi院t r茨ng UAB = UAN + UNB

Ai羽n tr荏 thu亥n R’ và đ瓜 t詠 c違m L’ có giá tr鵜:

A. R’ = 160 (っ); L’ =

2

1

H B. R’ = 160/3 (っ); L’ =

3

1

H

C. R’ = 160 (っ); L’ =

5

1

H D. R’ = 160/3 (っ); L’ =

5

1

H

R L C

A M N B

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

7

Câu 11: Cho m瓜t đo衣n m衣ch xoay chi隠u g欝m cu瓜n dây có đi羽n tr荏 r, đ瓜 t詠 c違m L m逸c n嘘i ti院p v噂i đi羽n tr荏

thu亥n R  5 . Bi院t hi羽u đi羽n th院 gi英a hai đ亥u đo衣n m衣ch và c逢運ng đ瓜 dòng đi羽n qua m衣ch có bi吋u th泳c:

100 2 cos(100 ) ( ), 2 2 cos(100 ) ( )

6 2

u t V i t A  

      . Giá tr鵜 c栄a r b茨ng:

A. 20, 6 B. 36, 6 C. 15, 7 D. 25,6

Câu 12: Cho đo衣n mach xoay chi隠u g欝m R, L m逸c n嘘i ti院p, hi羽u đi羽n th院 hai đ亥u đo衣n m衣ch có d衣ng

u t V  100 2 sin100 ( )  và c逢運ng đ瓜 dòng đi羽n qua m衣ch có d衣ng 2cos(100 )( )

4

i t A 

   . R, L

có nh英ng giá tr鵜 nào sau đây:

A. 1

R L H 50 ,

   B. 2

50 2 ,

2

R L H

  

C. 1

50 ,

2

R L H

   D. 1

R L H 100 ,

  

Câu 13: Cho m衣ch đi羽n xoay chi隠u g欝m R, C ghép n嘘i ti院p, hi羽u đi羽n th院 hai đ亥u m衣ch có

d衣ng u t AB  50 2 cos100 (V) và c逢運ng đ瓜 dòng đi羽n qua m衣ch 2 cos(100

3

i t

   ) (A). R, C

có nh英ng giá tr鵜 nào sau đây?

A.

3

10 50 ;

5

R C F

   B.

2

3.10 25 ;

25

R C F

  

C.

2

10 25 ;

25 3

R C F

   D.

3

5.10 R C F 50 ;

  

Câu 14: Cho m衣ch đi羽n xoay chi隠u nh逢 hình v胤 bi院t R = 50Ω ;C =

2

.10-4 F ; uAM = 80cos 100ヾt (V);

uMB = 200 2 cos(100ヾt +

2

)V . Giá tr鵜 r và L l亥n l逢嬰t là

A. 176,8Ω ;0,56H B. 250Ω ;0,8H

C. 250Ω ;0,56H D. 176,8Ω ;0,8H

Lo衣i 2: Quan h羽 gi英a các giá tr鵜 hi羽u d映ng c栄a các đi羽n áp (S嘘 đo c栄a Vôn- k院):

S渦 CH迂 CÁC AI烏N K蔭

a. Tác d映ng các đi羽n k院

Ai羽n k院 s穎 d映ng trong m衣ch đi羽n xoay chi隠u là vôn k院 nhi羽t và ampe k院 nhi羽t đo các giá tr鵜 hi羽u d映ng c栄a

đi羽n áp và c運ng đ瓜 dòng đi羽n

b. S嘘 ch雨 các đi羽n k院

- N院u vôn k院 có đi羽n tr荏 vô cùng l噂n và ampe k院 có đi羽n tr荏 không đáng k吋 thì vôn k院 ch雨 đi羽n áp trên đo衣n

m衣ch song song v噂i nó, ampe k院 ch雨 c逢運ng đ瓜 dòng đi羽n trong m衣ch n嘘i ti院p v噂i nó

- N院u vôn k院 có đi羽n tr荏 h英u h衣n, ampe k院 có có đi羽n tr荏 khác không thì ta coi chúng nh逢 nh英ng đi羽n tr荏 và

kh違o sát m衣ch bình th逢運ng

Ph逢挨ng pháp:

Cách 1:

- S穎 d映ng công th泳c: U  .ZI ; UR  IR ; L L U  IZ ; C C U  IZ ; U = U0/ 2 .

Ho員c

2 2 2 ( ) U U U U R L C    . Trong m衣ch R, L, C n嘘i ti院p luôn có UR ≤ U

và ; os L C R

R

U U U

tg c

U U

 

M

A

R C r,L

B

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

8

- Ho員c s穎 d映ng các công th泳c cho t瑛ng lo衣i đo衣n m衣ch:

Ví d映:

2 2 2

2 2 2

2 2

2 2 2

(1)

(2)

( ) (3)

( ) (4)

RL R L

RC R L

LC L C

R L C

U U U

U U U

U U U

U U U U

 

 

 

  

 Gi違i các ph逢挨ng trình trên đ吋 tìm ra , , ..............  U U U hoaëc soá chæ cuûa Voân Keá R L C

Cách 2: S穎 d映ng giãn đ欝 vec-t挨 Fresnel

- V胤 giãn đ欝 vec-t挨 Fresnel và nên v胤 theo quy t逸c 3 đi吋m( V胤 các vec- t挨 liên ti院p nhau)

- Áp d映ng đ鵜nh lí hàm s嘘 cos(ho員c sin) đ吋 tính cos ( sin )   hoaëc

- D詠a vào h羽 th泳c l逢嬰ng trong tam giác đ吋 tính , , , ...... U U U U R L C

Bài t壱p tr逸c nghi羽m:

Câu 1: Cho m瓜t đo衣n m衣ch xoay chi隠u n嘘i ti院p g欝m đi羽n tr荏 R, cu瓜n dây thu亥n c違m L và t映 C. A員t vào hai

đ亥u đo衣n m衣ch hi羽u đi羽n th院 u  100 2 sin(100 )Vt , lúc đó ZL  2ZC

và hi羽u đi羽n th院 hi羽u d映ng hai đ亥u

đi羽n tr荏 là UR  60V . Hi羽u đi羽n th院 hi羽u d映ng hai đ亥u cu瓜n dây là:

A. 60V B. 160V C. 120V D. 80V

Câu 2: Ng逢運i ta đo đ逢嬰c các hi羽u đi羽n th院 UAN = UAB = 20V; UMB = 12V. Hi羽u đi羽n th院 UAM, UMN, UNB l亥n

l逢嬰t là:

A. UAM = 12V; UMN = 32V; UNB =16V

B. UAM = 12V; UMN = 16V; UNB =32V

C. UAM = 16V; UMN = 24V; UNB =12V

D. UAM = 16V; UMN = 12V; UNB =24V

Câu 3: Trong đo衣n m衣ch xoay chi隠u ch雨 có t映 đi羽n , n院u đ欝ng th運i t<ng t亥n s嘘 c栄a đi羽n áp lên 4 l亥n và gi違m

đi羽n dung c栄a t映 đi羽n 2 l亥n (U0

không đ鰻i ) thì c逢運ng đ瓜 hi羽u d映ng qua m衣ch

A. t<ng 2 l亥n . B. t<ng 3 l亥n . C. gi違m 2 l亥n . D. gi違m 4 l亥n

Câu 4: Cho m衣ch đi羽n xoay chi隠u nh逢 hình v胤. Ng逢運i ta đo đ逢嬰c các

hi羽u đi羽n th院 UAM = 16V, UMN = 20V, UNB = 8V. Hi羽u đi羽n th院 gi英a hai

đ亥u đo衣n m衣ch AB là:

A. 44V B. 20V C. 28V D. 16V

Câu 5: Ao衣n m衣ch đi羽n xoay chi隠u RLC n嘘i ti院p. Hi羽u đi羽n th院 hi羽u

d映ng 荏 hai đ亥u đo衣n m衣ch là U = 123V, UR = 27V; UL = 1881V. Bi院t r茨ng m衣ch có tính dung kháng. Hi羽u

đi羽n th院 hi羽u d映ng 荏 hai đ亥u t映 đi羽n là

A. 200V. B. 402V. C. 2001V. D. 201V.

Câu 6: Cho m衣ch đi羽n g欝m cu瓜n dây thu亥n c違m m逸c n嘘i ti院p v噂i đi羽n tr荏 thu亥n. A員t vào hai đ亥u đo衣n m衣ch

m瓜t hi羽u đi羽n th院 xoay chi隠u 鰻n đ鵜nh. Dùng vôn k院 xoay chi隠u l亥n l逢嬰t đ員t vào hai đ亥u cu瓜n c違m và đi羽n

tr荏, s嘘 ch雨 l亥n l逢嬰t là 120V và 160V. N院u đ員t vôn k院 vào hai đ亥u đo衣n m衣ch thì s嘘 ch雨 c栄a vôn k院 là

A. 140V. B. 40V. C. 200V. D. 280V.

Câu 7: M瓜t hi羽u đi羽n th院 xoay chi隠u 25V, 50Hz đ逢嬰c đ員t vào hai đ亥u đo衣n m衣ch g欝m đi羽n tr荏 R m逸c n嘘i

ti院p v噂i cu瓜n dây thu亥n c違m L. Hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u R b茨ng 20V. Hi羽u đi羽n th院 hi羽u d映ng

gi英a hai đ亥u cu瓜n dây thu亥n c違m L là

A. 5V. B. 10V. C. 15V. D. 12V.

Câu 8: Ao衣n m衣ch RLC n嘘i ti院p, g欝m đi羽n tr荏 thu亥n 30  , m瓜t cu瓜n dây thu亥n c違m 191mH, m瓜t t映 đi羽n

53 F, đ逢嬰c đ医u vào m衣ng đi羽n xoay chi隠u 120V, 50Hz. Hi羽u đi羽n th院 gi英a hai đ亥u t映 đi羽n là

A. 60V. B. 120V. C. 240V. D. 48V.

Câu 9: Cho m衣ch đi羽n xoay chi隠u RLC, cu瓜n dây thu亥n c違m. Hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u m衣ch là

200V, UL

=

3

8

UR

= 2UC

. Hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u đi羽n tr荏 R là:

R L C

A M N B

Hình 49

R L C

A M N B

Hình 50

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

9

A. 180V. B. 120V . C. 145V. D. 100V.

Câu 10: (CA 2007) A員t hi羽u đi羽n th院 0

u U t  sin (U0 và  không đ鰻i) vào hai đ亥u đo衣n m衣ch RLC

không phân nhánh. Hi羽u đi羽n th院 hi羽u d映ng 荏 hai đ亥u đi羽n tr荏 thu亥n là 80V, hai đ亥u cu瓜n dây thu亥n c違m

(c違m thu亥n) là 120 V và hai đ亥u t映 đi羽n là 60 V. Hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u đo衣n m衣ch này b茨ng:

A. 140 V B. 100 V C. 220 V D. 260 V

Câu 11: (CA 2008) Khi đ員t hi羽u đi羽n th院 0

u U t V  sin ( )  vào hai đ亥u đo衣n m衣ch RLC không phân nhánh

thì hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u đi羽n tr荏, hai đ亥u cu瓜n dây và hai b違n t映 đi羽n l亥n l嬰t là 30 V, 120 V

và 80 V. Giá tr鵜 c栄a U0 b茨ng:

A. 30V B. 50 2 V C. 30 2 V D. 50 V

Câu 12: (CA 2008) M瓜t đo衣n m衣ch g欝m cu瓜n dây thu亥n c違m (c違m thu亥n) m逸c n嘘i ti院p v噂i đi羽n tr荏 thu亥n.

N院u đ員t hi羽u đi羽n th院 u t V  15 2 sin100 ( )  vào hai đ亥u đo衣n m衣ch thì hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u

cu瓜n dây là 5V. Khi đó hi羽u đi羽n th院 hi羽u d映ng gi英a hai đ亥u đi羽n tr荏 b茨ng

A.10 2V B. 5 2V C.10 3V D. 5 3V

D衣ng 2: Tính t鰻ng tr荏 – Tính c逢運ng đ瓜 dòng đi羽n

+ Tính t鰻ng tr荏 b茨ng công th泳c thao c医u t衣o ho員c công th泳c đ鵜nh ngh┄a

 2 2

Z R Z Z   L C ; 0

0

U U

Z

I I

 

+ Tính c逢運ng đ瓜 hay hi羽u đi羽n th院 t瑛 công th泳c c栄a đ鵜nh lu壱t ôm:

U

I

Z

 hay 0

0

U

I

Z

+ Tính c逢運ng đ瓜 dòng đi羽n ho員c đi羽n áp t瑛 đ鵜nh lu壱t Ohm:

1

1

L R C

L C

U U U U U

I

Z Z Z R Z

    

+ Gi英a các hi羽u đi羽n th院, có th吋 dùng h羽 th泳c liên l衣c sau đ吋 th詠c hi羽n tính toán:

A嘘i v噂i đo衣n m衣ch có ba ph亥n t穎 RLC m逸c n嘘i ti院p

T瑛 2 2 ( ) Z R Z Z     L C  

2 2 2 U U U U    R L C Hay  

2 2 2 U U U U 0 0 0 0    R L C

T瑛 2 2 ( ) ( ) Z R r Z Z      L C

2 2 2 2 ( ) ( ) U U U U U     R r L C

A嘘i v噂i đo衣n m衣ch có hai trong ba ph亥n t穎 m逸c n嘘i ti院p

T瑛 2 2 2 2 Z R Z U U U RL L RL R L     

T瑛 2 2 2 2 Z R Z U U U RC C RC R C     

T瑛 Z Z Z U U U LC L C LC L C     

+ C┡ng có th吋 tính d詠a vào gi違n đ欝 vect挨 quay bi吋u di宇n tính ch医t c瓜ng c栄a các hi羽u đi羽n th院.

u = u1 + u2

0 01 02

1 2

U U U

U U U

  

 

  

  

  

Chú ý:

- N院u đo衣n m衣ch không đ栄 c違 ba ph亥n t穎 R, L, C thì ph亥n t穎 thi院u có tr荏 kháng b茨ng không

Ao衣n m衣ch

T鰻ng tr荏

2 2

C

R Z 

2 2

L

R Z  L C Z Z 

www.MATHVN.com

www.mathvn.com

Giáo viên: Nguy宇n Thành Long Email: [email protected]

01694 013 498

10

tg

C

Z

R

 L

Z

R

2

2

 

 

  

   

- N院u đo衣n m衣ch có nhi隠u ph亥n t穎 cùng lo衣i n嘘i ti院p thì giá tr鵜 các đi羽n tr荏 trong công th泳c theo c医u t衣o là

t鰻ng các đi羽n tr荏:

1 2

1 2

1 2 ...

...

...

n

n

n

L L L L

C C C C

R R R R

Z Z Z Z

Z Z Z Z

    

   

   

- N院u cu瓜n t詠 c違m có c違m kháng ZL và đi羽n tr荏 ho衣t đ瓜ng R thì cu瓜n t詠 c違m này t逢挨ng đ逢挨ng v噂i đo衣n

m衣ch g欝m cu瓜n thu亥n c違m ZL n嘘i ti院p v噂i đi羽n tr荏 thu亥n R

Bài t壱p tr逸c nghi羽m:

Câu 1: (AH – 2008) Cho đo衣n m衣ch g欝m đi羽n tr荏 thu亥n R n嘘i ti院p v噂i t映 đi羽n có đi羽n dung C. Khi dòng

đi羽n xoay chi隠u có t亥n s嘘 góc  ch衣y qua thì t鰻ng tr荏 c栄a đo衣n m衣ch là

A.

2

2 1

R .

C

 

     

B.

2

2 1

R .

C

 

    

C.  2 2 R C .   D.  2 2 R C .  

HD:

Vì đo衣n m衣ch ch雨 có R và C m逸c n嘘i ti院p nên

2

2 1

0 Z Z R L C

 

       

Câu 2: (CA – 2010) A員t đi羽n áp 0

u U cos( t ) (V)

6

   vào hai đ亥u đo衣n m衣ch g欝m đi羽n tr荏 thu亥n R và

cu瓜n c違m thu亥n có đ瓜 t詠 c違m L m逸c n嘘i ti院p thì c逢運ng đ瓜 dòng đi羽n qua đo衣n m衣ch là

0

5

i I sin( t ) (A)

12

   . T雨 s嘘 đi羽n tr荏 thu亥n R và c違m kháng c栄a cu瓜n c違m là

A. 1

2

. B. 1. C. 3

2

. D. 3 .

HD:

0 0

5

sin( ) cos( )

12 12

i I t I t  

      ; tan tan 1

4 4

ZL

R

 

      

Câu 3: (CA – 2010) A員t đi羽n áp xoay chi隠u vào hai đ亥u đo衣n m衣ch g欝m đi羽n tr荏 thu亥n 40  và t映 đi羽n m逸c

n嘘i ti院p. Bi院t đi羽n áp gi英a hai đ亥u đo衣n m衣ch l羽ch pha

3

so v噂i c逢運ng đ瓜 dòng đi羽n trong đo衣n m衣ch.

Dung kháng c栄a t映 đi羽n b茨ng

A. 40 3  B. 40 3

3

 C. 40 D. 20 3 

HD:

Ao衣n m衣ch ch雨 ch泳a R và C mà theo gi違 thi院t đ瓜 l羽ch pha c栄a u so v噂i I là

3

, suy ra u ph違i tr宇 pha so v噂i i

t泳c là tan tan 3 40 3

3 3

C

C

Z

Z

R

 

 

  

              

www.MATHVN.com

www.mathvn.com

Tải ngay đi em, còn do dự, trời tối mất!