Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Giúp học sinh rèn luyện tư duy thông qua việc khai thác kết quả của một bài toán
MIỄN PHÍ
Số trang
3
Kích thước
165.1 KB
Định dạng
PDF
Lượt xem
1023

Giúp học sinh rèn luyện tư duy thông qua việc khai thác kết quả của một bài toán

Nội dung xem thử

Mô tả chi tiết

(HU P HO C SIN H RE M LUYE N TO DU Y

THONG QUA VIEC KHA I THA C KI T QUA CUA MD T DA I TOA N

O ThS. NGUYEN THI QUYEN - ThS. HOANG DIEU HONG*

Phat trien tu duy (TD) cho hoc sinh (HS) la

mot nhiem vy quan trong trong qua trinh

day hoc. Sy phat trien TD noi chung dugc

dya tren viec ren luyen cac thao tac TD (nhu: phan

tich, khai quat hoa, truu tugng hoa,...) ket hgp

vai cac phuang phapTD nhu quy ngp, suy diln,...

Trong qua trinh dgy hgc, bai tap toan Id phuang

tien ca bdn de ren luyen tu duy (RLTD), ddng thdi

giup HS ndm vung vd biet van dyng kien thuc

mdt cdch linh hogt. Bdi viet ndy de cap viec RLTD

cho HS thdng qua khai thdc ket qua cua mdt bdi

todn thdnh chudi bdi todn mdi, bdi todn ndy Id

tien de cho viec gidi bdi todn khdc. Viec khai

thdc ket qua cua mdt bdi todn dd biet khdng nhung

giup HS sdng tgo ra cdc bdi todn mdi, ket qua

mdi md con cd tdc dyng RLTD cho HS trong hgc

tap mdn Todn.

Bdi todn xud't phdt: Cho tarn gidc ABC. Chung

mm inh rdng: cosA + cosB + cosC < - (1).

Day Id bdi todn ca bdn ve bdt ddng thuc lugng

gidc trong tarn gidc thudc chuang trinh todn phd

thdng. Cd rd't nhieu cdch gidi bdi todn ndy, mdi

cdch gidi deu huu ich cho HS trong viec RLTD.

Gido vien (GV) cd the hudng dan HS gidi bdi

todn ngdn ggn nhu sau:

Phuang trinh (1) <=> 1 - 2si2n A + 2cos

2 2

B + C B-C

COS

<=> 4sin 2 2

- A • A B-C

- 4sinycos-j- + 1 > 0 (dc

A

— +

2

B + C n ~ B + C . A ,

- nen cos—— = sin —

2 2 2 '

o(2sin f -cos^) 2

+sin 2

-^> 0 (bdt ddng

thuc ndy ludn dung).

Ddng thuc xdy ra <=> 2sin- B-C

2

B-C

i

2

<=> = 0

Tap chi Giao due so 26 1 (ki 1.5/20111

2sin￾B-C (do

= 0

B-C

2

(do 0 < — < n) <=> " 3 o AABC

= c

O bdi todn tren, bd't ddng thuc thu dugc Id

dung cho mgi tarn gidc. Nhu vdy, khi dgy hgc

bdi todn ndy, GV can dua ra mdt cdu hdi Id:

Lieu vdi cung gid thiet nhu d bai toan xudt phat,

ta con cd the thu dugc nhung bdt ddng thuc lugng

gidc ndo khdc nua? Cd sy dmh hudng cua GV,

HS se ddc lap suy nghTvd tim cdu trd Idi.

Theo gid thiet cua bdi todn, A, B, C Id ba gdc

cua mdt tarn gidc bd't ki, khi dd ta ludn cd:

A C + A

2 ' 2

Ji

A + B

2' 2 , cac goc: 2 2

y-y ; §" § c

u n

g Id ba gdc cua mdt tarn gidc

ndo dd. Phep phdn tich Id mdt thao tdc cua TD,

phdn tich Id chia mdt chinh the ra Idm nhieu phdn

rieng le de di sdu vdo nghien cuu chi tiet tung

phdn. Qua trinh nghien cuu phdi mang tinh djnh

hudng cy the, chdng hgn, dd'i vdi mdt bdi todn cd

gid thiet vd ket ludn thi sy phdn tich can hudng vdo

myc dich tim ra cdc mdt xich ndi giua gid thiet vd

ket ludn. Trong dgy hgc, phep phdn tich Id mdt

thao tdc TD quan trgng de gidi quye't vdn de, HS

can dugc ren luyen thudng xuyen thao tdc TD ndy

trong qua trinh hgc tap todn.

Tuang ty vdi ket qua thu dugc cua bdi

todn xud't phdt, ta cd bd't ddng thuc sau:

cos( | . A) + cos( | . | ) + CO s(| -1) < | (2). Phep tuong

ty dugc xem nhu Id tien thdn cua khdi qudt hda,

trong nhung trudng hgp nhdt djnh, ta cd the coi

qua trinh thyc hien phep tuang ty nhu Id bieu

* Tnrong Dai hoc Hong But

Tải ngay đi em, còn do dự, trời tối mất!