Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Các định lý duy nhất cho các đường cong chỉnh hình trên hình vành khuyên kết hợp với các siêu phẳng
MIỄN PHÍ
Số trang
7
Kích thước
314.0 KB
Định dạng
PDF
Lượt xem
738

Các định lý duy nhất cho các đường cong chỉnh hình trên hình vành khuyên kết hợp với các siêu phẳng

Nội dung xem thử

Mô tả chi tiết

UNIQUENESS THEOREMS FOR HOLOMORPHIC CURVES

ON ANNULUS SHARING HYPERPLANES

Nguyen Viet Phuong

Thai Nguyen University of Economics and Business Administration - Thai Nguyen University

ABSTRACT

In this paper, by using the second main theorem for holomorphic curves from annuli ∆ to P

n(C) inter￾secting a collection of fixed hyperplanes in general position with truncated counting functions, we will

prove some theorems on unicity for linearly non-degenerate holomorphic curves on annulus ignoring mul￾tiplicity with hyperplanes in general position in projective space. This theorems have shown the sufficient

conditions for two linearly non-degenerate holomorphic curves being equivalent.

Keywords: Unicity, annuli, hyperplane, holomorphic curve, general position.

1 INTRODUCTION

In 1926, R. Nevanlinna proved that two non￾constant meromorphic functions of one com￾plex variable which attain same five distinct

values at the same points, must be identical. In

1975, H.Fujimoto (see [2]) generalized Nevan￾linna’s result to the case of meromorphic map￾pings of C

m into P

n(C). He given the suf￾ficient condition with 3n + 2 hyperplanes in

general position which determining a meromor￾phic maps. Since that time, this problem has

been studied intensively. The many mathe￾maticians study two following problems: find￾ing properties of unique range sets, and find￾ing out a unique range set with the smallest

number of elements as possible. For exam￾ple: Fujimoto ([2],[3]), Smiley ([8]), Ru ([9]),

Dethloft-Tan ([1]), Phuong ([6],[7]) and many

auther. In this paper by using the second main

theorem with ramification of Phuong-Thin (see

[5]) we give some uniqueness results for linearly

non-degenerate holomorphic curves on annulus

sharing sufficiently many hyperplanes in pro￾jective space. First, we introduce some nota￾tions.

Let R0 > 1 be a fixed positive real number or

+∞, set

∆ = 

z ∈ C :

1

R0

< |z| < R0

,

be an annulus in C. Let f : ∆ → P

n(C) be a

holomorphic curve, and f = (f0, . . . , fn) be a

reduced representative of f, namely f0, . . . , fn

are holormorphic functions on ∆ without com￾mon zeros. For 1 < r < R0, characteristic func￾tion Tf (r) of f is defined by

Tf (r) = 1

Z 2π

0

log kf(reiθ)kdθ

+

1

Z 2π

0

log kf(r

−1

e

iθ)kdθ,

where kf(z)k = max{|f0(z)|, . . . , |fn(z)|}. The

above definition is independent, up to an ad￾ditive constant, of the choice of the reduced

representation of f.

Let f = (f0, . . . , fn) : ∆ → P

n(C) be a holo￾morphic map where f0, . . . , fn are holomorphic

functions and without common zeros in ∆, let

H be a hyperplane in P

n(C) and

L(z0, . . . , zn) = Xn

j=0

aizj

be the linear form in n + 1 variables with co￾efficients in C defining H, where aj ∈ C, j =

0, . . . , n, be constants. Set

(f, H) = Xn

j=0

ajfj .

0*Tel: 0977615535, e-mail: nvphuongt@gmail.com

Tải ngay đi em, còn do dự, trời tối mất!