Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Specialty Optical Fibers Handbook docx
Nội dung xem thử
Mô tả chi tiết
Specialty Optical Fibers Handbook
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page i 31.10.2006 9:35pm
This page intentionally left blank
Specialty Optical Fibers
Handbook
ALEXIS ME´ NDEZ
MCH Engineering, LLC, Alameda, California
T. F. MORSE
Photonics Center, Boston University, Boston, Massachusetts
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page iii 31.10.2006 9:35pm
Academic Press in an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WCIX 8RR, UK
This book is printed on acid-free paper.
Copyright 2007, Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system,
without permission in writing from the publisher.
Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected].
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by
selecting ‘‘Customer Support’’ and then ‘‘Obtaining Permissions.’’
Library of Congress Cataloging-in Publication Data
Application Submitted
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 13: 978-0-12-369406-5
ISBN 10: 0-12-369406-X
For information on all Elsevier Academic Press publications
visit our Web site at www.books.elsevier.com
Printed in the United States of America
06 07 08 09 10 9 8 7 6 5 4 3 2 1
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page iv 31.10.2006 9:35pm
To my wife Shiva
for her unconditional love, support, and patience
A.M.
‘‘Under the shade of your tresses,
how softly slept my heart,
intoxicated and lovely,
so peaceful and so free . . . ’’
RUMI
To Edelgard
for her patience, wisdom, and love.
T.F.M.
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page v 31.10.2006 9:35pm
This page intentionally left blank
Contents
Dedication v
Editors xxiii
List of Contributors xxv
Preface xxxvii
1 Specialty Optical Fiber Market Overview 1
Stephen Montgomery
1.1 Market Overview 1
1.1.1 Production Versus Consumption 1
1.1.2 Rapidly Growing Need to Use Fiber Optic Sensors 2
1.1.3 Weapon System Development 3
1.1.4 100–1000 Improvements in Performance 3
1.1.5 High Cost of Functionality 4
1.1.6 Multiple Features in the Same Specialty Fibers 4
1.2 Specialty Optical Fibers: A Few Selected Examples 4
1.2.1 Fluoride Fiber 4
1.2.2 Tellurite Fiber 5
1.2.3 Bismuth-Doped Fiber 5
1.2.4 Polarizing Fiber 6
1.2.5 Photonic Crystal Fiber—Holey Fibers 7
1.2.6 Dispersion-Compensating Fiber 8
1.2.7 High-Index Fiber 11
1.2.8 Polarization-Maintaining Fiber 11
1.2.9 Photosensitive Fiber 13
1.2.10 Erbium-Doped Fiber 13
1.3 Conclusions 17
2 Light-Guiding Fundamentals and Fiber Design 19
Robert Lingle, Jr., David W. Peckham, Alan McCurdy,
and Jinkee Kim
2.1 Introduction 19
2.2 Physical Structure of a Telecommunications Optical Fiber 20
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page vii 31.10.2006 9:35pm
vii
2.3 Linear Lightwave Propagation in an Optical Fiber 20
2.3.1 Electromagnetic Preliminaries 20
2.3.2 Intuition from the Slab Waveguide 22
2.3.3 Optical Fiber: A Cylindrical Waveguide 24
2.3.4 The Linearly Polarized Mode Set LPlm 25
2.3.5 Finite Element Analysis for Waveguide Calculations 27
2.4 Working Definitions of Cutoff Wavelength 29
2.4.1 Introduction 29
2.4.2 Theoretical Cutoff Wavelength 29
2.4.3 Effective Cutoff Wavelengths 29
2.5 Impact of Profile Design on Macrobending Losses 32
2.5.1 The Depressed Cladding Fiber Design 32
2.5.2 Phenomenology of Macrobending Loss 34
2.6 Fiber Attenuation Loss 36
2.7 Origins of Chromatic Dispersion 38
2.7.1 Introduction 38
2.7.2 Material Dispersion 38
2.7.3 Waveguide Dispersion 42
2.8 Polarization Mode Dispersion 45
2.8.1 Overview 45
2.8.2 Background 46
2.8.3 Modeling and Simulation 48
2.8.4 Control of PMD in Fiber Manufacturing 49
2.8.5 Measurement of PMD 51
2.8.6 Fiber-to-Cable-to-Field PMD Mapping 53
2.9 Microbending Loss 55
2.9.1 Microbending 55
2.10 Fiber Nonlinearities 60
2.10.1 Overview 60
2.10.2 Background 61
References 65
3 Overview of Materials and Fabrication Technologies 69
John B. MacChesney, Ryan Bise, and Alexis Me´ndez
3.1 Double-Crucible Technique 69
3.2 Vapor-Deposition Techniques 70
3.3 Outside Vapor Deposition 71
3.4 Vertical Axial Deposition 73
3.5 Direct Nanoparticle Deposition 75
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page viii 31.10.2006 9:35pm
viii Contents
3.6 Modified Chemical Vapor Deposition 77
3.6.1 Chemical Equilibria: Dopant Incorporation 78
3.6.2 Purification from Hydroxyl Contamination 80
3.6.3 Thermophoresis 80
3.7 Plasma Chemical Vapor Deposition 82
3.8 Sol-Gel Processes 83
3.8.1 Alkoxide Sol-Gel Processing 83
3.8.2 Colloidal Sol-Gel Processing 84
3.9 Sol-Gel Microstructure Fiber Fabrication 86
3.10 Fiber Drawing 88
Acknowledgments 91
References 91
4 Optical Fiber Coatings 95
Steven R. Schmid and Anthony F. Toussaint
4.1 Introduction 95
4.2 Early History of Coatings for Optical Fiber 96
4.3 Evolution of Optical Fibers and Protective Coatings 97
4.3.1 Coating Contributions to Microbending
Minimization 97
4.3.2 Glass Fiber Fracture Mechanics and Coating
Contributions to Fiber Strength Retention 99
4.3.3 Durability of Fiber Optic Coatings 100
4.4 Cabling of Optical Fibers 102
4.5 Specialty Coatings 103
4.6 Basics of Optical Fiber Chemistry 103
4.6.1 Oligomers 103
4.6.2 Monomers 105
4.6.3 Photoinitiators 105
4.6.4 Adhesion Promoters 105
4.6.5 Other Additives 106
4.7 Application of Coatings on the Draw Tower 108
4.7.1 Coating Cure Speed Measurement Techniques 110
4.7.2 Cured Properties of Coatings on Fiber 113
4.7.3 Test Methods for UV-Curable Liquids
and UV-Cured Films 115
4.7.4 Coating Adhesion 117
4.8 Summary 117
Acknowledgments 118
References 118
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page ix 31.10.2006 9:35pm
Contents ix
5 Single-Mode Fibers for Communications 123
Robert Lingle, Jr., David W. Peckham, Kai H. Chang,
and Alan McCurdy
5.1 Introduction 123
5.2 System Impairments Influencing Fiber Design 124
5.2.1 Limitations from Optical Signal-to-Noise Ratio 124
5.2.2 Limitations from Intersymbol Interference 125
5.2.3 Limitations from Nonlinearity 126
5.2.4 Limitations from Amplifier Technology 127
5.2.5 Can Fiber Design Be Used to Optimize
a Transmission System? 127
5.3 Overview of ITU Standards Fiber Categories 129
5.4 Optical Fibers for Reduced Attenuation 132
5.4.1 Pure Silica Core Fiber 133
5.4.2 Zero Water Peak Fiber 133
5.5 Optical Fiber Design Principles for Wideband
and High Bit Rate Transmission 141
5.5.1 Precise Dispersion Compensation 142
5.5.2 Dispersion Compensation Fiber Technology 142
5.5.3 Full-Band Dispersion Compensation 143
5.5.4 Requirement for Low Residual Dispersion 144
5.5.5 Factors Affecting Nonlinearity 145
5.5.6 Impairments Affecting Raman Amplification 147
5.5.7 Systems Implications of Tx Fiber PMD 147
5.5.8 Summary of Design Principles 148
5.6 Design of Nonzero Dispersion Fibers 148
5.6.1 Fiber Transmission Parameter Tradeoffs 149
5.6.2 Realizability, Manufacturability, and Scalability 150
5.6.3 Low-Dispersion NZDFs 152
5.6.4 Medium-Dispersion NZDFs 155
5.7 A New Paradigm in Transmission Line Design 158
References 159
6 Specialty Single-Mode Fibers 165
Lars-Erik Nilsson, A˚
sa Claesson, Walter Margulis,
and Pierre-Yves Fonjallaz
6.1 Introduction 165
6.2 Macrohole Fiber 166
6.2.1 Microfluidic Devices 168
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page x 31.10.2006 9:35pm
x Contents
6.3 Fibers with Internal Electrodes 169
6.3.1 Electrodes 170
6.3.2 Applications 173
6.4 Multicore Fibers and Components 175
6.4.1 Coupled Cores 176
6.4.2 Uncoupled Cores 180
6.4.3 Manufacturing Multicore Fibers 182
6.5 Fibers for High-Temperature–Resistant Gratings 185
6.6 Summary 188
References 188
7 Rare Earth-Doped Fibers 195
David J. DiGiovanni, Roman Shubochkin, T. F. Morse,
and Borut Lenardic
7.1 Introduction 195
7.2 Motivation 196
7.3 Host Glasses for Rare Earth Ions 198
7.4 Fabrication of Rare Earth-Doped Fibers 200
7.4.1 Overview of Optical Fiber Fabrication 200
7.4.2 Incorporation of Rare Earth Elements 202
7.4.3 Summary of Rare Earth-Doped
Fabrication Techniques 210
7.5 Erbium-Doped Fiber 210
7.5.1 Principles of Operation 211
7.5.2 Fiber Design Issues 213
7.5.3 Fiber Composition Issues 216
7.5.4 Short Wavelength Amplifiers 219
7.6 The Co-Doped Er/Yb System 222
7.7 Double-Clad Fiber 223
7.7.1 Limitations of Fiber Lasers 226
7.7.2 Methods to Improve Performance 227
7.8 Conclusion 237
References 237
8 Polarization Maintaining Fibers 243
Chris Emslie
8.1 What is a Polarization Maintaining Fiber? 243
8.2 Why Use PM Fibers?—Applications 244
8.2.1 Interferometry 244
8.2.2 The Fiber Optic Gyroscope 245
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page xi 31.10.2006 9:35pm
Contents xi
8.2.3 Coherent Communications 245
8.2.4 Integrated Optics 246
8.2.5 Laser Doppler Anemometry and Velocimetry 247
8.2.6 EDFA Pump Combiners, Reflection-Suppression
Schemes, Current Sensing, and Optical Coherence
Tomography 249
8.3 How Do PM Fibers Work? 249
8.4 PM Fiber Types: Stress and Form Birefringent 250
8.4.1 Stress-Birefringent Fibers: Bowtie, PANDA,
and Elliptical Jacket 250
8.4.2 Elliptical Core, Form-Birefringent Fiber 253
8.4.3 Microstructure (‘‘Holey’’) Fibers 254
8.4.4 Polarizing Fiber 254
8.5 PM Fiber Fabrication Methods 256
8.5.1 Bowtie Fibers 256
8.5.2 PANDA Fiber 258
8.5.3 Elliptical Jacket Fiber 258
8.5.4 Elliptical Core, Form-Birefringent Fiber 260
8.5.5 Microstructure (‘‘Holey’’) Fibers 261
8.6 Key Performance Parameters 262
8.6.1 Attenuation (a) 262
8.6.2 Numerical Aperture (NA) 263
8.6.3 Is There a Connection Between Polarization
Maintenance and Attenuation? 264
8.6.4 Cutoff Wavelength (lc) 264
8.6.5 Mode-Field Diameter (MFD) 265
8.6.6 Beat Length (Lp) 267
8.6.7 Extinction Ratio (ER) 269
8.6.8 H-Parameter 270
8.6.9 Effect of Test Conditions and Environment
on Polarization Maintaining Performance 270
8.7 Mechanical and Lifetime Properties 273
8.7.1 Strength Paradox I: Fragile Preforms Make
Exceptionally Strong Fibers 273
8.7.2 Strength Paradox II: Thin Fibers Can Be Stronger
Than Thicker Ones 275
References 276
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page xii 31.10.2006 9:35pm
xii Contents
9 Photosensitive Fibers 279
Andre´ Croteau and Anne Claire Jacob Poulin
9.1 Introduction 279
9.2 Design and Fabrication 281
9.3 Standard Numerical Aperture Fibers 282
9.3.1 Standard Single-Mode Fibers 283
9.3.2 Boron-Doped Germano-Silicate Fibers 283
9.3.3 Antimony-Doped Fibers 286
9.3.4 Tin-Doped Fibers 287
9.4 High Numerical Aperture 287
9.4.1 Heavily Ge-Doped Silica Optical Fibers 288
9.4.2 Tin-Doped Germano-Silicate Fibers 289
9.4.3 Indium-Doped Germano-Silicate Fibers 290
9.5 Cladding Mode Suppression 291
9.6 Rare Earth-Doped Photosensitive Fibers 293
9.6.1 Germano-Alumino-Silicate Glass Host Core 294
9.6.2 Confined Core 297
9.6.3 Photosensitive-Clad 300
9.6.4 Confined Core and Photosensitive Clad 300
9.6.5 Antimony-Doped Alumino-Silicate 301
9.7 Polarization Maintaining 302
9.8 Other Photosensitive Fiber Types 303
9.8.1 Polymer Optical Fibers 304
9.8.2 Fluoride Glass 308
9.8.3 Heavily P-Doped Silica Fibers 308
9.9 Conclusions 309
Acknowledgments 310
References 310
10 Hollow-Core Fibers 315
Steven A. Jacobs, Burak Temelkuran, Ori Weisberg, Mihai
Ibanescu, Steven G. Johnson, and Marin Soljac˘ic´
10.1 Introduction 315
10.1.1 Wave-Guiding by Total Internal Reflection 316
10.1.2 Wave-Guiding by Reflection Off a Conducting
Boundary 317
10.1.3 Wave-Guiding by Photonic Band-Gaps 318
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page xiii 31.10.2006 9:35pm
Contents xiii
10.2 Light Transmission in Hollow-Core Fiber 320
10.2.1 Hollow Metal Waveguides 323
10.2.2 Wave-Guiding in Bragg and OmniGuide Fibers 324
10.2.3 Loss Mechanisms in OmniGuide Fibers 327
10.2.4 Wave-Guiding in 2D Photonic-Crystal Fiber 341
10.3 Applications of Hollow-Core Fibers 347
10.3.1 Hollow-Core Fibers for Medical Applications 347
10.3.2 Potential Telecom Applications 349
10.3.3 Hollow-Core Fibers as Gas Cells 350
10.3.4 Applications of Hollow-Core Fibers for
Remote Sensing 351
10.3.5 Industrial Applications 351
10.4 Hollow-Core Fiber Manufacturing 352
10.4.1 OmniGuide Fiber Manufacturing 352
10.4.2 Techniques Used in the Manufacture
of Other Hollow-Core Fibers 355
10.5 Conclusions 357
References 357
11 Silica Nanofibers and Subwavelength-Diameter Fibers 361
Limin Tong and Eric Mazur
11.1 Nanofiber at a Glance 361
11.2 Introduction 361
11.3 Modeling of Single-Mode Wave-Guiding
Properties of Silica Nanofibers 362
11.3.1 Basic Model 363
11.3.2 Power Distribution: Fraction of Power
Inside the Core and Effective Diameter 367
11.3.3 Group Velocity and Waveguide Dispersion 372
11.4 Fabrication and Microscopic Characterization of Silica
Nanofibers 374
11.4.1 Two-Step Taper Drawing of Silica Nanofibers 375
11.4.2 Electron Microscope Study of Silica Nanofibers 377
11.5 Properties of Silica Nanofibers 381
11.5.1 Micromanipulation and Mechanical Properties 381
11.5.2 Wave-Guiding and Optical Loss 385
11.6 Applications and Potential Uses of Silica Nanofibers 388
11.6.1 Microscale and Nanoscale Photonic Components 389
11.6.2 Nanofiber Optical Sensors 394
11.6.3 Additional Applications 396
References 396
Mendez / Specialty Optical Fibers Handbook prelims Final Proof page xiv 31.10.2006 9:35pm
xiv Contents