Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Special Functions part 10 pdf
MIỄN PHÍ
Số trang
5
Kích thước
143.8 KB
Định dạng
PDF
Lượt xem
1113

Tài liệu Special Functions part 10 pdf

Nội dung xem thử

Mô tả chi tiết

6.9 Fresnel Integrals, Cosine and Sine Integrals 255

visit website http://www.nr.com or call 1-800-872-7423 (North America only),

or send email to [email protected] (outside North America).

readable files (including this one) to any server

computer, is strictly prohibited. To order Numerical Recipes books,

diskettes, or CDROMs

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine￾Copyright (C) 1988-1992 by Cambridge University Press.

Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

6.9 Fresnel Integrals, Cosine and Sine Integrals

Fresnel Integrals

The two Fresnel integrals are defined by

C(x) = Z x

0

cos π

2

t

2



dt, S(x) = Z x

0

sin π

2

t

2



dt (6.9.1)

The most convenient way of evaluating these functions to arbitrary precision is

to use power series for small x and a continued fraction for large x. The series are

C(x) = x −

2

2 x5

5 · 2! +

2

4 x9

9 · 4! −···

S(x) = π

2

 x3

3 · 1! −

2

3 x7

7 · 3! +

2

5 x11

11 · 5! −···

(6.9.2)

There is a complex continued fraction that yields both S(x) and C(x) si￾multaneously:

C(x) + iS(x) = 1 + i

2 erf z, z =

√π

2 (1 − i)x (6.9.3)

where

ez2

erfc z = 1

√π

 1

z +

1/2

z +

1

z +

3/2

z +

2

z + ···

= 2z

√π

 1

2z2 + 1 −

1 · 2

2z2 + 5 −

3 · 4

2z2 + 9 − ··· (6.9.4)

In the last line we have converted the “standard” form of the continued fraction to

its “even” form (see §5.2), which converges twice as fast. We must be careful not

to evaluate the alternating series (6.9.2) at too large a value of x; inspection of the

terms shows that x = 1.5 is a good point to switch over to the continued fraction.

Note that for large x

C(x) ∼ 1

2 +

1

πx

sin π

2

x2



, S(x) ∼ 1

2 − 1

πx

cos π

2

x2



(6.9.5)

Thus the precision of the routine frenel may be limited by the precision of the

library routines for sine and cosine for large x.

Tải ngay đi em, còn do dự, trời tối mất!