Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Phương trình mũ logarit pot
Nội dung xem thử
Mô tả chi tiết
dao thi bich lien --- thpt yen lac
bÀI TẬP PHƯƠNG TRÌNH MŨ
1) 4 2 2 6
1 4 2
+ = +
x+ x+ x+
2) 3 4.3 27 0
4 8 2 5
− + =
x+ x+
3) 2 4.3 9.2 5.6
x
x x
− =
4) x x x
8.3 + 3.2 = 24 + 6
5) 6.( 0.7) 7
100
7
2
= +
x
x
x
6) 3 1
125 50 2
+
+ =
x x x
7) 4 .3 3 2 .3 2 6
2 1 2
+ + = + +
+
x x x x
x x x
9) 3 3 3 3 750 1 2 3 4
+ − + =
x+ x− x− x−
10) 1 2 4 3
7.3 5 3 5
+ + + +
− = −
x x x x
11) 6.4 −13.6 + 6.9 = 0
x x x
12) 5 3.5 110 2 1 2 1
− =
x+ x−
13) 1 2 4 3
7.3 5 3 5
+ + + +
− = −
x x x x
14) 6.9 13.6 6.4 0
1
6.
1 1
− + =
+
x x x
15) ( ) ( )
10(2 3)
101 2 3 2 3
2 1 2 1
2 2
−
+ + − =
x − x+ x − x−
16) 5 2 5 2 0
1 2
+ − + =
x− x x x+
17) 2 3 3 5
2
2 4
− + −
=
x x x
18) 2 2 1
3
2
1
9 2 2 3
−
+ +
− = −
x
x x
x
19) + log2 (9 − 2 ) = 3
x
x
20) 2 2
4 16 10.2
− −
+ =
x x
21) 2 9.2 2 0
2 1 2 2
2 2
− + =
x + x +x x+
22) ( ) 1
2
12
2
1
2 6.2 3 1
3
− − + = x− x
x x
23) x
x
1 3 2
2 + =
24) 3 3 30 2 2
+ =
+x −x
25) 2 1
3
4 9 6
+
+
+ =
x x
x
26) x x x x
5 3 2.5 2.3
2 2
= + +
27) 1 1 2
2 2 2 2
2 3 3 2
− − +
− = −
x x x x
28) x x− −x
=
1 2
10
5
1
2 .5
29) ( ) ( )
3
3 5 16 3 5 2
+
+ + − =
x
x x
30) x x x
3.16 + 2.81 = 2.36
31) ( )
2
log
2 2 2 2 1
2
2
x x
x
lo x
= +
+ + −
32) 2 ( 4 2) 4 4 4 8
2 2
x + − x − = x + − x −
x
33) log 9 2 log log 3 2 2 2 x x .3 x
x
= −
34) 3 .8 6
2 =
x +
x
x
35) 2. 2 5 0
2 8
log 3log + − =
x − x
x x
36) log 3 log 5 2 2 x + x = x
37) ( )
( ) ( )
log 4 2 3
2 4 2
2 − = −
−
x x
x
38) lg10x lg x lg100x
4 − 6 = 2.3
39) 2 6
6
1
2
1
2
3
1
3 = − +
−
+ −
− x
x x
x
x
x
40) 5.3 7.3 1 6.3 9 0
2 1 1 1
− + − + =
x− x− x x+
41) 2
log2 2 log2 6 log2 4
4 2.3
x x
− x =
42) ( )
1 2
2 2 1
2
− = −
− −
x
x x x
43) 3x 2x 2 x 3x
7 + 9.5 = 5 + 9.7
PHƯƠNG TRÌNH LÔGARIT
1) log4
( x + 3) − log4
( x −1) = 2 − log4 8
2) lg5 + lg( x +10) −1 = lg( 21x − 20) − lg( 2x −1)
3)
− +
= +
− −
8
1
lg
2
1
2
1
lg
2
1
lg
2
1
lg x x x x
4) log 3 log 2 0
3
1
3
1
x − x + =
5) ( ) 8
8
log 4 log
2
2
2
2
1 + =
x
x
6) log (4 6) log (2 2) 2
2
5
− − 5 − =
x x
9) 0
6
7
logx 2 − log4x + =
10) log5
x + log3
x = log5 3.log9 225
11) ( ) 2 log ( 1)
log 2
1
log 3 1 2
3
2 − + = + +
+
x x
x
12) log (4 4) log (2 3)
1
2
2 + = − 1 −
x x+
x
13) x x x x 2 7 2 7
log + 2log = 2 + log .log
14)log ( 1).log ( 1) log ( 1)
2
20
2
5
2
4
x − x − x + x − = x − x −
1