Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Phương pháp xấp xỉ phần tử hữu hạn đối với bài toán biên cho phương trình vi phân cấp bốn
Nội dung xem thử
Mô tả chi tiết
FINITE-ELEMENT APPROXIMATION OF A BOUNDARY VALUE PROBLEM
FOR FOURTH ODER DIFFERENTIAL EQUATION
Nguyen Thanh Huong1
and Vu Vinh Quang2
1
Thainguyen University, College of Sciences
2
Thainguyen University, Information and Communication Technology
ABSTRACT
A finite-element approximation of a boundary value problem for fourth oder differential equation is given in work of J. Y. Shin [1]. In this paper, we introduce some results
in [1] with a different way in the proof of lemma 2.1 and correct a mistake in theorem
2.2. After that, we provide a remark of choosing an appropriate parameter ω which
will guarantee the convergence of the iteration.
Key words: Fourth oder differential equation, Finite-element approximation.
1. Introduction
In the study of transverse vibrations of a hinged beam there arises the following
boundary value problem fourth order differential eqution:
y
(4) − εy00 −
2
π
Z π
0
y
0
2
dx
y
00 = p(x), 0 ≤ x ≤ π,
y(0) = y(π) = y
00(0) = y
00(π) = 0,
(1.1)
where > 0 is a constant, p(x) is a continuous function and nonpositive on [0, π].
Letting φ = −y
00, problem (1.1) is reduced to the system of two second order equations:
−φ
00 + εφ +
2
π
Z π
0
y
0
2
dx
φ = p(x), 0 ≤ x ≤ π,
−y
00 − φ = 0,
y(0) = y(π) = φ(0) = φ(π) = 0.
(1.2)
Letting H1
0 denote the Sobolev space of L
2
(0, π) functions with first derivatives
in L
2
(0, π) and vanishing at 0, π, the variational formulation of (1.2) can be given as
follows. Find (φ, y) ∈ H1
0 × H1
0
such that
φ
0
, ϕ0
+ ε(φ, ϕ) + 2
π
Z π
0
y
0
2
dx
(φ, ϕ) = (p, ϕ), ϕ ∈ H
1
0
,
y
0
, η0
− (φ, η) = 0, η ∈ H
1
0
,
(1.3)
where (f, g) = R π
0
f(x)g(x)dx.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.e