Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

On the unmixedness and universal catenaricity of local rings and local cohomology modules
MIỄN PHÍ
Số trang
9
Kích thước
184.1 KB
Định dạng
PDF
Lượt xem
1752

On the unmixedness and universal catenaricity of local rings and local cohomology modules

Nội dung xem thử

Mô tả chi tiết

Journal of Algebra 321 (2009) 303–311

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the unmixedness and universal catenaricity of local rings

and local cohomology modules ✩

Le Thanh Nhan a,∗, Tran Nguyen An b

a College of Natural Sciences, Thai Nguyen University, Thai Nguyen, Viet Nam

b College of Education, Thai Nguyen University, Thai Nguyen, Viet Nam

article info abstract

Article history:

Received 18 June 2008

Available online 23 September 2008

Communicated by Kazuhiko Kurano

Keywords:

Local cohomology modules

Unmixedness

Universal catenaricity

Multiplicity

Let (R,m) be a Noetherian local ring and M a finitely generated

R-module. Let i 0 be an integer. Consider the following property

for the Artinian local cohomology module Hi

m(M)

AnnR (0 :

Hi

m(M) p) = p for all p ∈ Var

AnnR

Hi

m(M)

. (∗)

In this paper, we study the property (∗) of Hi

m(M) in order

to investigate the universal catenaricity of the ring R/AnnR M

and the unmixedness of the ring R/p for certain p in Supp M.

We also characterize the property (∗) for Hi

m(M) and obtain the

associativity formulae for multiplicity of Hi

m(M) in case where

Hi

m(M) satisfies the property (∗).

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, let (R,m) be a Noetherian local ring, A an Artinian R-module, and M a

finitely generated R-module. For each ideal I of R, we denote by Var(I) the set of all prime ideals

containing I. For a subset T of Spec(R), we denote by min(T ) the set of all minimal elements of T

under the inclusion.

It is clear that AnnR (M/pM) = p for all p ∈ Var(AnnR M). Therefore it is natural to ask the dual

property for Artinian modules:

AnnR (0 :A p) = p for all p ∈ Var(AnnR A). (∗)

✩ This paper is the result of the Scientific Research Project at Ministrial level in Mathematics.

* Corresponding author.

E-mail addresses: [email protected] (L.T. Nhan), [email protected] (T.N. An).

0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jalgebra.2008.09.005

Tải ngay đi em, còn do dự, trời tối mất!