Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

On the top local cohomology modules
MIỄN PHÍ
Số trang
11
Kích thước
186.6 KB
Định dạng
PDF
Lượt xem
1957

On the top local cohomology modules

Nội dung xem thử

Mô tả chi tiết

Journal of Algebra 349 (2012) 342–352

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the top local cohomology modules ✩

Le Thanh Nhan ∗, Tran Do Minh Chau

Thai Nguyen College of Sciences, Thai Nguyen, Viet Nam

article info abstract

Article history:

Received 17 July 2011

Available online 13 September 2011

Communicated by Kazuhiko Kurano

MSC:

13D45

13E15

13E10

Keywords:

Top local cohomology module

Attached prime

Co-support

Multiplicity

Let (R,m) be a Noetherian local ring and I an ideal of R. Let M be

a finitely generated R-module with dim M = d. It is clear by Matlis

duality that if R is complete then Hd

I (M) satisfies the following

property:

AnnR (0 :

Hd

I (M) p) = p

for all prime ideals p ⊇ AnnR Hd

I (M). (∗)

However, Hd

I (M) does not satisfy the property (∗) in general. In

this paper we characterize the property (∗) of Hd

I (M) in order

to study the catenarity of the ring R/AnnR Hd

I (M), the set of

attached primes AttR Hd

I (M), the co-support CosR (Hd

I (M)), and

the multiplicity of Hd

I (M). We also show that if Hd

I (M) satisfies

the property (∗) then Hd

I (M) ∼= Hd

m(M/N) for some submodule N

of M.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, (R,m) is a Noetherian local ring, I is an ideal of R and M is a finitely

generated R-module with dim M = d. Let Var(I) denote the set of all prime ideals of R containing I.

Denote by R and M the m-adic completions of R and M respectively.

It is clear that AnnR (M/pM) = p for all prime ideals p ∈ Var(AnnR M). So, it follows by Matlis

duality that if R is complete then

✩ The authors were supported by the Vietnam National Foundation for Science and Technology Development.

* Corresponding author.

E-mail address: [email protected] (L.T. Nhan).

0021-8693/$ – see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jalgebra.2011.08.027

Tải ngay đi em, còn do dự, trời tối mất!