Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Junior problems - Phần 3 ppt
Nội dung xem thử
Mô tả chi tiết
Junior problems
J175. Let a, b ∈ (0,
π
2
) such that sin2 a + cos 2b ≥
1
2
sec a and sin2
b + cos 2a ≥
1
2
sec b. Prove that
cos6
a + cos6
b ≥
1
2
.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J176. Solve in positive real numbers the system of equations
(
x1 + x2 + · · · + xn = 1
1
x1
+
1
x2
+ · · · +
1
xn
+
1
x1x2···xn
= n
3 + 1.
Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau, Romania
J177. Let x, y, z be nonnegative real numbers such that ax + by + cz ≤ 3abc for some positive real
numbers a, b, c. Prove that
r
x + y
2
+
r
y + z
2
+
r
z + x
2
+
√4 xyz ≤
1
4
(abc + 5a + 5b + 5c).
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J178. Find the sequences of integers (an)n≥0 and (bn)n≥0 such that
(2 + √
5)n = an + bn
1 + √
5
2
for each n ≥ 0.
Proposed by Dorin Andrica, Babes-Bolyai University, Cluj-Napoca, Romania
J179. Solve in real numbers the system of equations
(x + y)(y
3 − z
3
) = 3(z − x)(z
3 + x
3
)
(y + z)(z
3 − x
3
) = 3(x − y)(x
3 + y
3
)
(z + x)(x
3 − y
3
) = 3(y − z)(y
3 + z
3
)
Proposed by Titu Andreescu, University of Texas at Dallas, USA
J180. Let a, b, c, d be distinct real numbers such that
1
√3
a − b
+
1
√3
b − c
+
1
√3
c − d
+
1
√3
d − a
6= 0.
Prove that √3
a − b +
√3
b − c +
√3
c − d +
√3
d − a 6= 0.
Proposed by Dorin Andrica, Babes-Bolyai University, Cluj-Napoca, Romania
Mathematical Reflections 6 (2010) 1