Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Junior problems - Phần 1 pps
Nội dung xem thử
Mô tả chi tiết
Junior problems
J163. Let a, b, c be nonzero real numbers such that ab + bc + ca ≥ 0. Prove that
ab
a
2 + b
2
+
bc
b
2 + c
2
+
ca
c
2 + a
2
≥ −
1
2
.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
We have
X
cyc
ab
a
2 + b
2
=
X
cyc
ab
a
2 + b
2
+
1
2
−
3
2
=
X
cyc
(a + b)
2
2 (a
2 + b
2)
−
3
2
≥
X
cyc
(a + b)
2
2 (a
2 + b
2 + c
2)
−
3
2
=
2
a
2 + b
2 + c
2
+ 2(ab + bc + ca)
2 (a
2 + b
2 + c
2)
−
3
2
= 1 +
ab + bc + ca
a
2 + b
2 + c
2
−
3
2
=
ab + bc + ca
a
2 + b
2 + c
2
−
1
2
≥ −
1
2
where in the last step we have used the fact that ab + bc + ca ≥ 0.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Prithwijit De, HBCSE, India; Andrea Ligori, Universit`a di Roma “Tor
Vergata”, Italy; Piriyathumwong P., Bangkok, Thailand.
Mathematical Reflections 4 (2010)
J164. If x and y are positive real numbers such that
x +
√
x
2 + 1y +
p
y
2 + 1
= 2011, find the
minimum possible value of x + y.
Proposed by Neculai Stanciu, “George Emil Palade”, Buzau, Romania
First solution by Michel Bataille, France The required minimum value is √
2010
2011 .
Write x = sinh(a) and y = sinh(b) where a = ln(x+
√
x
2 + 1) > 0 and b = ln(y+
p
y
2 + 1) > 0.
From the hypothesis, we have a + b = ln(2011) and using a known formula,
x + y = sinh(a) + sinh(b) = 2 sinh
a + b
2
cosh
a − b
2
≥ 2 sinh
a + b
2
= 2 sinh(ln(√
2011)
where the inequality follows from cosh(t) ≥ 1 for all t and sinh(u) > 0 for u > 0.
Since 2 sinh(ln(√
2011) = √
2011 − √
1
2011 = √
2010
2011 , we obtain
x + y ≥
2010
√
2011
.
Clearly equality holds when a = b (since cosh(0) = 1), that is, when x = y. The result follows.
Second solution by the authors
Let z = x +
√
x
2 + 1. We have z > 0 and (1) x =
z
2−1
2z
. From hypothesis y +
p
y
2 + 1 = 2011
z
,
we get (2) y =
20112−z
2
2·2011·z
. From (1) and (2),
x + y =
z
2 − 1
2z
+
20112 − z
2
2 · 2011 · z
=
2010
2 · 2011
z +
2011
z
≥
2010
2011r
z ·
2011
z
.
The equality occurs for z
2011
z
or equivalently z
2 = 2011. Then from (1) and
(2)
we obtain
x = y =
2010
2
√
2011
=
1005
√
2011
.
So min(x + y) = √
2010
2011 .
Also solved by Arkady Alt, San Jose, California, USA; Francisco Javier Garcia Capitan, Spain;
Ercole Suppa, Teramo, Italy; Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Perfetti
Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor Vergata Roma, Italy.
Mathematical Reflections 4 (2010) 2
J165. Find all triples (x, y, z) of integers satisfying the system of equations
(
x
2 + 1y
2 + 1
+
z
2
10 = 2010
(x + y)(xy − 1) + 14z = 1985.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Arkady Alt, San Jose, California, USA
Note that z = 10k for some integer k because z
2
10
= 2010 −
x
2 + 1 y
2 + 1
is an integer. Let
p = x + y and q = xy − 1. Then
x
2 + 1 y
2 + 1
= x
2
y
2 + x
2 + y
2 + 1 = (xy − 1)2 + (x + y)
2 = p
2 + q
2
and the system becomes
p
2 + q
2 + 10k
2 = 2010
pq + 140k = 1985 ⇐⇒
p
2 + q
2 = 2010 − 10k
2
pq = 1985 − 140k
(1)
Since (p − q)
2 = 2010 − 10k
2 − 2 (1985 − 140k) = −10 (k − 14)2
then only k = 14 can provide
solvability to (1). And for k = 14, (1) becomes
p
2 + q
2 = 50
pq = 25 ⇐⇒ p = q = 5.
Hence,
x + y = 5
xy = 4 ⇐⇒
x = 4
y = 1 or
x = 1
y = 4 and triples (5, 1, 140),(1, 5, 140) are all
integer solutions of the original system in integers.
Also solved by Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Piriyathumwong P.,
Bangkok, Thailand.
Mathematical Reflections 4 (201