Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Junior problems - Phần 1 pps
Nội dung xem thử
Mô tả chi tiết
Junior problems
J163. Let a, b, c be nonzero real numbers such that ab + bc + ca ≥ 0. Prove that
ab
a
2 + b
2
+
bc
b
2 + c
2
+
ca
c
2 + a
2
≥ −
1
2
.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
We have
X
cyc
ab
a
2 + b
2
=
X
cyc
ab
a
2 + b
2
+
1
2
−
3
2
=
X
cyc
(a + b)
2
2 (a
2 + b
2)
−
3
2
≥
X
cyc
(a + b)
2
2 (a
2 + b
2 + c
2)
−
3
2
=
2
a
2 + b
2 + c
2
+ 2(ab + bc + ca)
2 (a
2 + b
2 + c
2)
−
3
2
= 1 +
ab + bc + ca
a
2 + b
2 + c
2
−
3
2
=
ab + bc + ca
a
2 + b
2 + c
2
−
1
2
≥ −
1
2
where in the last step we have used the fact that ab + bc + ca ≥ 0.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Prithwijit De, HBCSE, India; Andrea Ligori, Universit`a di Roma “Tor
Vergata”, Italy; Piriyathumwong P., Bangkok, Thailand.
Mathematical Reflections 4 (2010)
J164. If x and y are positive real numbers such that
x +
√
x
2 + 1y +
p
y
2 + 1
= 2011, find the
minimum possible value of x + y.
Proposed by Neculai Stanciu, “George Emil Palade”, Buzau, Romania
First solution by Michel Bataille, France The required minimum value is √
2010
2011 .
Write x = sinh(a) and y = sinh(b) where a = ln(x+
√
x
2 + 1) > 0 and b = ln(y+
p
y
2 + 1) > 0.
From the hypothesis, we have a + b = ln(2011) and using a known formula,
x + y = sinh(a) + sinh(b) = 2 sinh
a + b
2
cosh
a − b
2
≥ 2 sinh
a + b
2
= 2 sinh(ln(√
2011)
where the inequality follows from cosh(t) ≥ 1 for all t and sinh(u) > 0 for u > 0.
Since 2 sinh(ln(√
2011) = √
2011 − √
1
2011 = √
2010
2011 , we obtain
x + y ≥
2010
√
2011
.
Clearly equality holds when a = b (since cosh(0) = 1), that is, when x = y. The result follows.
Second solution by the authors
Let z = x +
√
x
2 + 1. We have z > 0 and (1) x =
z
2−1
2z
. From hypothesis y +
p
y
2 + 1 = 2011
z
,
we get (2) y =
20112−z
2
2·2011·z
. From (1) and (2),
x + y =
z
2 − 1
2z
+
20112 − z
2
2 · 2011 · z
=
2010
2 · 2011
z +
2011
z
≥
2010
2011r
z ·
2011
z
.
The equality occurs for z
2011
z
or equivalently z
2 = 2011. Then from (1) and
(2)
we obtain
x = y =
2010
2
√
2011
=
1005
√
2011
.
So min(x + y) = √
2010
2011 .
Also solved by Arkady Alt, San Jose, California, USA; Francisco Javier Garcia Capitan, Spain;
Ercole Suppa, Teramo, Italy; Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Perfetti
Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor Vergata Roma, Italy.
Mathematical Reflections 4 (2010) 2
J165. Find all triples (x, y, z) of integers satisfying the system of equations
(
x
2 + 1y
2 + 1
+
z
2
10 = 2010
(x + y)(xy − 1) + 14z = 1985.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Arkady Alt, San Jose, California, USA
Note that z = 10k for some integer k because z
2
10
= 2010 −
x
2 + 1 y
2 + 1
is an integer. Let
p = x + y and q = xy − 1. Then
x
2 + 1 y
2 + 1
= x
2
y
2 + x
2 + y
2 + 1 = (xy − 1)2 + (x + y)
2 = p
2 + q
2
and the system becomes
p
2 + q
2 + 10k
2 = 2010
pq + 140k = 1985 ⇐⇒
p
2 + q
2 = 2010 − 10k
2
pq = 1985 − 140k
(1)
Since (p − q)
2 = 2010 − 10k
2 − 2 (1985 − 140k) = −10 (k − 14)2
then only k = 14 can provide
solvability to (1). And for k = 14, (1) becomes
p
2 + q
2 = 50
pq = 25 ⇐⇒ p = q = 5.
Hence,
x + y = 5
xy = 4 ⇐⇒
x = 4
y = 1 or
x = 1
y = 4 and triples (5, 1, 140),(1, 5, 140) are all
integer solutions of the original system in integers.
Also solved by Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Piriyathumwong P.,
Bangkok, Thailand.
Mathematical Reflections 4 (201