Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Junior problems - Phần 1 pps
MIỄN PHÍ
Số trang
31
Kích thước
304.5 KB
Định dạng
PDF
Lượt xem
1043

Tài liệu đang bị lỗi

File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.

Junior problems - Phần 1 pps

Nội dung xem thử

Mô tả chi tiết

Junior problems

J163. Let a, b, c be nonzero real numbers such that ab + bc + ca ≥ 0. Prove that

ab

a

2 + b

2

+

bc

b

2 + c

2

+

ca

c

2 + a

2

≥ −

1

2

.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

We have

X

cyc

ab

a

2 + b

2

=

X

cyc



ab

a

2 + b

2

+

1

2



3

2

=

X

cyc

(a + b)

2

2 (a

2 + b

2)

3

2

X

cyc

(a + b)

2

2 (a

2 + b

2 + c

2)

3

2

=

2

a

2 + b

2 + c

2



+ 2(ab + bc + ca)

2 (a

2 + b

2 + c

2)

3

2

= 1 +

ab + bc + ca

a

2 + b

2 + c

2

3

2

=

ab + bc + ca

a

2 + b

2 + c

2

1

2

≥ −

1

2

where in the last step we have used the fact that ab + bc + ca ≥ 0.

Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica

de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor

Vergata Roma, Italy; Prithwijit De, HBCSE, India; Andrea Ligori, Universit`a di Roma “Tor

Vergata”, Italy; Piriyathumwong P., Bangkok, Thailand.

Mathematical Reflections 4 (2010)

J164. If x and y are positive real numbers such that 

x +

x

2 + 1y +

p

y

2 + 1

= 2011, find the

minimum possible value of x + y.

Proposed by Neculai Stanciu, “George Emil Palade”, Buzau, Romania

First solution by Michel Bataille, France The required minimum value is √

2010

2011 .

Write x = sinh(a) and y = sinh(b) where a = ln(x+

x

2 + 1) > 0 and b = ln(y+

p

y

2 + 1) > 0.

From the hypothesis, we have a + b = ln(2011) and using a known formula,

x + y = sinh(a) + sinh(b) = 2 sinh 

a + b

2



cosh 

a − b

2



≥ 2 sinh 

a + b

2



= 2 sinh(ln(√

2011)

where the inequality follows from cosh(t) ≥ 1 for all t and sinh(u) > 0 for u > 0.

Since 2 sinh(ln(√

2011) = √

2011 − √

1

2011 = √

2010

2011 , we obtain

x + y ≥

2010

2011

.

Clearly equality holds when a = b (since cosh(0) = 1), that is, when x = y. The result follows.

Second solution by the authors

Let z = x +

x

2 + 1. We have z > 0 and (1) x =

z

2−1

2z

. From hypothesis y +

p

y

2 + 1 = 2011

z

,

we get (2) y =

20112−z

2

2·2011·z

. From (1) and (2),

x + y =

z

2 − 1

2z

+

20112 − z

2

2 · 2011 · z

=

2010

2 · 2011 

z +

2011

z



2010

2011r

z ·

2011

z

.

The equality occurs for z

2011

z

or equivalently z

2 = 2011. Then from (1) and

(2)

we obtain

x = y =

2010

2

2011

=

1005

2011

.

So min(x + y) = √

2010

2011 .

Also solved by Arkady Alt, San Jose, California, USA; Francisco Javier Garcia Capitan, Spain;

Ercole Suppa, Teramo, Italy; Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Perfetti

Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor Vergata Roma, Italy.

Mathematical Reflections 4 (2010) 2

J165. Find all triples (x, y, z) of integers satisfying the system of equations

(

x

2 + 1y

2 + 1

+

z

2

10 = 2010

(x + y)(xy − 1) + 14z = 1985.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Arkady Alt, San Jose, California, USA

Note that z = 10k for some integer k because z

2

10

= 2010 −

x

2 + 1 ￾y

2 + 1

is an integer. Let

p = x + y and q = xy − 1. Then

x

2 + 1 ￾y

2 + 1

= x

2

y

2 + x

2 + y

2 + 1 = (xy − 1)2 + (x + y)

2 = p

2 + q

2

and the system becomes



p

2 + q

2 + 10k

2 = 2010

pq + 140k = 1985 ⇐⇒ 

p

2 + q

2 = 2010 − 10k

2

pq = 1985 − 140k

(1)

Since (p − q)

2 = 2010 − 10k

2 − 2 (1985 − 140k) = −10 (k − 14)2

then only k = 14 can provide

solvability to (1). And for k = 14, (1) becomes 

p

2 + q

2 = 50

pq = 25 ⇐⇒ p = q = 5.

Hence, 

x + y = 5

xy = 4 ⇐⇒ 

x = 4

y = 1 or 

x = 1

y = 4 and triples (5, 1, 140),(1, 5, 140) are all

integer solutions of the original system in integers.

Also solved by Daniel Lasaosa, Universidad P´ublica de Navarra, Spain; Piriyathumwong P.,

Bangkok, Thailand.

Mathematical Reflections 4 (201

Tải ngay đi em, còn do dự, trời tối mất!