Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Junior problems - Phần 2 potx
Nội dung xem thử
Mô tả chi tiết
Junior problems
J175. Let a, b ∈ (0,
π
2
) such that sin2 a + cos 2b ≥
1
2
sec a and sin2
b + cos 2a ≥
1
2
sec b. Prove that
cos6
a + cos6
b ≥
1
2
.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Prithwijit De, HBCSE, India
We will use the following well-known trigonometric identities
(a) sin2 x = 1 − cos2 x,
(b) cos 2x = 2 cos2 x − 1,
(c) sec x =
1
cos x
.
The inequalities can be written as
2 cos2
b cos a − cos3
a ≥
1
2
(1)
and
2 cos2
a cos b − cos3
b ≥
1
2
. (2)
The signs of the inequalities are preserved because cos x is positive when x ∈
0,
π
2
. Now by
squaring both sides of (1) and (2) and adding them we get
cos6 a + cos6
b ≥
1
2
.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Tigran Hakobyan, Armenia.
Mathematical Reflections 6 (2010) 1
J176. Solve in positive real numbers the system of equations
(
x1 + x2 + · · · + xn = 1
1
x1
+
1
x2
+ · · · +
1
xn
+
1
x1x2···xn
= n
3 + 1.
Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau, Romania
Solution by Tigran Hakobyan, Armenia
We have
1
x1
+
1
x2
+ · · · +
1
xn
≥
n
2
x1 + x2 + · · · + xn
= n
2
and
1
x1x2 · · · xn
≥
1
x1+x2+···+xn
n
n = n
n
.
Thus,
n
3 + 1 ≥ n
n + n
2
which implies that n ≤ 2. If n = 1 we get a contradiction. For n = 2 we get
(
x1 + x + 2 = 1
1
x1
+
1
x2
+
1
x1x2
= 9
which is (n, x1, x2) ∈
2,
1
3
,
2
3
,
2,
2
3
,
1
3
.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Lorenzo Pascali, Universit`a di Roma “La Sapienza”, Roma, Italy.
Mathematical Reflections 6 (2010
J177. Let x, y, z be nonnegative real numbers such that ax + by + cz ≤ 3abc for some positive real
numbers a, b, c. Prove that
r
x + y
2
+
r
y + z
2
+
r
z + x
2
+
√4 xyz ≤
1
4
(abc + 5a + 5b + 5c).
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by the author
From the given condition,
3a ≥
ax
bc +
y
c
+
z
b
3b ≥
x
c
+
by
ca
+
z
a
3c ≥
x
b
+
y
a
+
cz
ab .
Then
3(a + b + c) ≥
x + y
c
+
y + z
a
+
z + x
b
+
ax
bc +
by
ca
+
cz
ab
hence
abc + 5(a + b + c) ≥
x + y
c
+ 2c
+
y + z
a
+ 2a
+
z + x
b
+ 2b
+
abc +
ax
bc +
by
ca
+
cz
ab
≥ 2
p
2(x + y) + 2p
(y + z) + 2p
(z + x) + 4√4 xyz
and the conclusion follows. The equality holds if and only if x+y = 2c
2
, y+z = 2a
2
, z+x = 2b
2
and ax
bc =
by
ca =
cz
ab = abc. This implies b
2
c
2 = c
2a
2 = 2c
2
, c2a
2 + a
2
b
2 = 2a
2
, a2
b
2 + b
2
c
2 = 2b
2
,
that is b
2 + a
2 = c
2 + b
2 = a
2 + c
2 = 2, implying a = b = c = 1 and x = y = z = 1. If
a = b = c = x = y = z = 1, the equality, as well as the condition of the problem, hold
Mathematical Reflections 6 (2010) 3