Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Junior problems - Phần 2 potx
MIỄN PHÍ
Số trang
34
Kích thước
203.8 KB
Định dạng
PDF
Lượt xem
788

Tài liệu đang bị lỗi

File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.

Junior problems - Phần 2 potx

Nội dung xem thử

Mô tả chi tiết

Junior problems

J175. Let a, b ∈ (0,

π

2

) such that sin2 a + cos 2b ≥

1

2

sec a and sin2

b + cos 2a ≥

1

2

sec b. Prove that

cos6

a + cos6

b ≥

1

2

.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Prithwijit De, HBCSE, India

We will use the following well-known trigonometric identities

(a) sin2 x = 1 − cos2 x,

(b) cos 2x = 2 cos2 x − 1,

(c) sec x =

1

cos x

.

The inequalities can be written as

2 cos2

b cos a − cos3

a ≥

1

2

(1)

and

2 cos2

a cos b − cos3

b ≥

1

2

. (2)

The signs of the inequalities are preserved because cos x is positive when x ∈



0,

π

2



. Now by

squaring both sides of (1) and (2) and adding them we get

cos6 a + cos6

b ≥

1

2

.

Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica

de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor

Vergata Roma, Italy; Tigran Hakobyan, Armenia.

Mathematical Reflections 6 (2010) 1

J176. Solve in positive real numbers the system of equations

(

x1 + x2 + · · · + xn = 1

1

x1

+

1

x2

+ · · · +

1

xn

+

1

x1x2···xn

= n

3 + 1.

Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau, Romania

Solution by Tigran Hakobyan, Armenia

We have

1

x1

+

1

x2

+ · · · +

1

xn

n

2

x1 + x2 + · · · + xn

= n

2

and

1

x1x2 · · · xn

1

x1+x2+···+xn

n

n = n

n

.

Thus,

n

3 + 1 ≥ n

n + n

2

which implies that n ≤ 2. If n = 1 we get a contradiction. For n = 2 we get

(

x1 + x + 2 = 1

1

x1

+

1

x2

+

1

x1x2

= 9

which is (n, x1, x2) ∈

￾2,

1

3

,

2

3



,

2,

2

3

,

1

3

 .

Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica

de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor

Vergata Roma, Italy; Lorenzo Pascali, Universit`a di Roma “La Sapienza”, Roma, Italy.

Mathematical Reflections 6 (2010

J177. Let x, y, z be nonnegative real numbers such that ax + by + cz ≤ 3abc for some positive real

numbers a, b, c. Prove that

r

x + y

2

+

r

y + z

2

+

r

z + x

2

+

√4 xyz ≤

1

4

(abc + 5a + 5b + 5c).

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by the author

From the given condition,

3a ≥

ax

bc +

y

c

+

z

b

3b ≥

x

c

+

by

ca

+

z

a

3c ≥

x

b

+

y

a

+

cz

ab .

Then

3(a + b + c) ≥

x + y

c

+

y + z

a

+

z + x

b

+



ax

bc +

by

ca

+

cz

ab

hence

abc + 5(a + b + c) ≥



x + y

c

+ 2c



+



y + z

a

+ 2a



+



z + x

b

+ 2b



+



abc +

ax

bc +

by

ca

+

cz

ab

≥ 2

p

2(x + y) + 2p

(y + z) + 2p

(z + x) + 4√4 xyz

and the conclusion follows. The equality holds if and only if x+y = 2c

2

, y+z = 2a

2

, z+x = 2b

2

and ax

bc =

by

ca =

cz

ab = abc. This implies b

2

c

2 = c

2a

2 = 2c

2

, c2a

2 + a

2

b

2 = 2a

2

, a2

b

2 + b

2

c

2 = 2b

2

,

that is b

2 + a

2 = c

2 + b

2 = a

2 + c

2 = 2, implying a = b = c = 1 and x = y = z = 1. If

a = b = c = x = y = z = 1, the equality, as well as the condition of the problem, hold

Mathematical Reflections 6 (2010) 3

Tải ngay đi em, còn do dự, trời tối mất!