Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Junior problems - Phần 2 potx
Nội dung xem thử
Mô tả chi tiết
Junior problems
J175. Let a, b ∈ (0,
π
2
) such that sin2 a + cos 2b ≥
1
2
sec a and sin2
b + cos 2a ≥
1
2
sec b. Prove that
cos6
a + cos6
b ≥
1
2
.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Prithwijit De, HBCSE, India
We will use the following well-known trigonometric identities
(a) sin2 x = 1 − cos2 x,
(b) cos 2x = 2 cos2 x − 1,
(c) sec x =
1
cos x
.
The inequalities can be written as
2 cos2
b cos a − cos3
a ≥
1
2
(1)
and
2 cos2
a cos b − cos3
b ≥
1
2
. (2)
The signs of the inequalities are preserved because cos x is positive when x ∈
0,
π
2
. Now by
squaring both sides of (1) and (2) and adding them we get
cos6 a + cos6
b ≥
1
2
.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Tigran Hakobyan, Armenia.
Mathematical Reflections 6 (2010) 1
J176. Solve in positive real numbers the system of equations
(
x1 + x2 + · · · + xn = 1
1
x1
+
1
x2
+ · · · +
1
xn
+
1
x1x2···xn
= n
3 + 1.
Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzau, Romania
Solution by Tigran Hakobyan, Armenia
We have
1
x1
+
1
x2
+ · · · +
1
xn
≥
n
2
x1 + x2 + · · · + xn
= n
2
and
1
x1x2 · · · xn
≥
1
x1+x2+···+xn
n
n = n
n
.
Thus,
n
3 + 1 ≥ n
n + n
2
which implies that n ≤ 2. If n = 1 we get a contradiction. For n = 2 we get
(
x1 + x + 2 = 1
1
x1
+
1
x2
+
1
x1x2
= 9
which is (n, x1, x2) ∈
2,
1
3
,
2
3
,
2,
2
3
,
1
3
.
Also solved by Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad P´ublica
de Navarra, Spain; Perfetti Paolo, Dipartimento di Matematica, Universit`a degli studi di Tor
Vergata Roma, Italy; Lorenzo Pascali, Universit`a di Roma “La Sapienza”, Roma, Italy.
Mathematical Reflections 6 (2010
J177. Let x, y, z be nonnegative real numbers such that ax + by + cz ≤ 3abc for some positive real
numbers a, b, c. Prove that
r
x + y
2
+
r
y + z
2
+
r
z + x
2
+
√4 xyz ≤
1
4
(abc + 5a + 5b + 5c).
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by the author
From the given condition,
3a ≥
ax
bc +
y
c
+
z
b
3b ≥
x
c
+
by
ca
+
z
a
3c ≥
x
b
+
y
a
+
cz
ab .
Then
3(a + b + c) ≥
x + y
c
+
y + z
a
+
z + x
b
+
ax
bc +
by
ca
+
cz
ab
hence
abc + 5(a + b + c) ≥
x + y
c
+ 2c
+
y + z
a
+ 2a
+
z + x
b
+ 2b
+
abc +
ax
bc +
by
ca
+
cz
ab
≥ 2
p
2(x + y) + 2p
(y + z) + 2p
(z + x) + 4√4 xyz
and the conclusion follows. The equality holds if and only if x+y = 2c
2
, y+z = 2a
2
, z+x = 2b
2
and ax
bc =
by
ca =
cz
ab = abc. This implies b
2
c
2 = c
2a
2 = 2c
2
, c2a
2 + a
2
b
2 = 2a
2
, a2
b
2 + b
2
c
2 = 2b
2
,
that is b
2 + a
2 = c
2 + b
2 = a
2 + c
2 = 2, implying a = b = c = 1 and x = y = z = 1. If
a = b = c = x = y = z = 1, the equality, as well as the condition of the problem, hold
Mathematical Reflections 6 (2010) 3