Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

International Macroeconomics and Finance: Theory and Empirical Methods Phần 9 pdf
Nội dung xem thử
Mô tả chi tiết
9.2. PRICING TO MARKET 297
From the money demand functions it follows that the steady state
change in the nominal exchange rate is
Sà = Mà − Mà ∗ − 1
²
h
Cà − Cà∗
i
. (9.171)
Adjustment to Monetary Shocks under Sticky Prices
Consider an unanticipated and permanent monetary shock at time t,
where Màt = Mà , and Mà ∗
t = Mà ∗. As in Redux, the new steady state is
attained at t + 1, so that Sàt+1 = Sà, Pàt+1 = P , à and Pà∗
t+1 = Pà∗.
Date t nominal goods prices are set and fixed one-period in advance.
By (9.10) and (9.11), it follows that the general price levels are also
predetermined, Pàt = Pà∗
t = 0. The short-run versions of (9.141) and
(9.142) are
Mà = 1
²
Càt + β
²(1 − β)
àδt, (9.172)
Mà ∗ = 1
²
Cà∗
t + β
²(1 − β)
[àδt + Sà − Sàt]. (9.173)
Subtracting (9.173) from (9.172) gives
Màt − Mà ∗
t = 1
²
(Càt − Cà∗
t ) − β
²(1 − β)
(Sà − Sàt). (9.174)
From (9.153) and (9.154) you get
Càt = àδt + Cà + P , à (9.175)
Cà∗
t = àδt + Cà∗ + Pà∗ + Sà − Sàt. (9.176)
At t + 1 PPP is restored, Pà = Pà∗ + Sà. Subtract (9.176) from (9.175)
to get
Cà − Cà∗ = Càt − Cà∗
t − Sàt. (9.177)
The monetary shock generates a short-run violation of purchasing power
parity and therefore a short-run international divergence of real interest
rates. The incompleteness in the international asset market results in
imperfect international risk sharing. Domestic and foreign consumption
movements are therefore not perfectly correlated.
298CHAPTER 9. THE NEW INTERNATIONAL MACROECONOMICS
To solve for the exchange rate take Sà from (9.171) and plug into
(9.174) to get
"
1 + β
²(1 − β)
# ³
Màt − Mà ∗
t
¥
= 1
²
³
Càt − Cà∗
t
¥
+ β
²2(1 − β)
³
Cà − Cà∗
¥
+ β
²(1 − β)
Sàt.
Using (9.177) to eliminate Cà − Cà∗, you get
Sàt = β + ²(1 − β)
β(² − 1)
h
²(Màt − Mà ∗
t ) − (Càt − Cà∗
t )
i
. (9.178)
This is not the solution because Càt − Cà∗
t is endogenous. To get the
solution, you have from the consolidated budget constraints (9.143)
and (9.144)
Càt = nxàt(z) + (1 − n)[Sàt + àvt(z)] − βàbt, (9.179)
Cà∗
t = (1 − n)àx∗
t (z∗
) + n[àv∗
t (z∗
) − Sàt] + β n
1 − n
àbt, (9.180)
(201-202)⇒ and you have from (9.147)ó(9.150)
xàt(z) = Càt; àx∗
t (z∗
) = Cà∗
t ; àvt(z) = Cà∗
t ; àv∗
t (z∗
) = Càt. (9.181)
Subtract (9.180) from (9.179) and using the relations in (9.181), you
have
Sàt = (Càt − Cà∗
t ) + β
2(1 − n)2
àbt. (9.182)
Substitute the steady state change in relative consumption (9.170) into
(9.177) to get
àb = −2θ(1 − n)
β(1 + θ) [Càt − Cà∗
t − Sàt], (9.183)
and plug (9.183) into (9.182) to get
Càt − Cà∗
t − Sàt = 2θ
(1 + θ)
[Càt − Cà∗
t − Sàt].
It follows that Càt−Cà∗
t −Sàt = 0. Looking back at (9.183), it must be the
case that àb = 0 so there are no current account effects from monetary
shocks. By (9.164) and (9.165), you see that Cà = Cà∗ = 0, and by
9.2. PRICING TO MARKET 299
(9.155) and (9.156) it follows that Pà = Mà , and Pà∗ = Mà ∗. Money is
therefore neutral in the long run.
Now substitute Sàt = Càt − Cà∗
t back into (9.178) to get the solution
for the exchange rate
Sàt = [²(1 − β) + β](Màt − Mà ∗
t ). (9.184)
The exchange rate overshoots its long-run value and exhibits more
volatility than the monetary fundamentals if the consumption elasticity of money demand 1/² < 1.14 Relative prices are unaffected by the
change in the exchange rate, àpt(z) − qàt(z∗) = 0. A domestic monetary
shock raises domestic spending, part of which is spent on foreign goods.
The home currency depreciates Sàt > 0 in response to foreign firms repatriating their increased export earnings. Because goods prices are fixed
there is no expenditure switching effect. However, the exchange rate
adjustment does have an effect on relative income. The depreciation
raises current period dollar (and real) earnings of US firms and reduces
current period euro (and real) earnings of European firms. This redistribution of income causes home consumption to increase relative to
foreign consumption.
Real and nominal exchange rates. The short-run change in the real
exchange rate is ⇐(205)
Pàt − Pà∗
t − Sàt = −Sàt,
which is perfectly correlated with the short-run adjustment in the nominal exchange rate.
Liquidity effect. If rt is the real interest rate at home, then (1 + rt) =
(Pt)/(Pt+1δt). Since Pàt = 0, it follows that àrt = −(Pà + àδt) = −(àδt +Mà )
and (9.175)ó(9.172) can be solved to get
àδt = (1 − β)(² − 1)M, à (9.185)
which is positive under the presumption that ² > 0. It follows that ⇐(206)
14Obstfeld and Rogoff show that a sectoral version of the Redux model with
traded and non-traded goods produces many of the same predictions as the pricingto-market model.