Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

International Macroeconomics and Finance: Theory and Empirical Methods Phần 3 docx
MIỄN PHÍ
Số trang
38
Kích thước
448.4 KB
Định dạng
PDF
Lượt xem
1321

Tài liệu đang bị lỗi

File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.

International Macroeconomics and Finance: Theory and Empirical Methods Phần 3 docx

Nội dung xem thử

Mô tả chi tiết

2.7. FILTERING 69

Now let λò ∼ U[0, π]

29. Imagine that we take a draw from this distribu-

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

Figure 2.2: π/2Phase shift. Solid: cos(t), Dashed: cos(t + π/2).

tion. Let the realization be λ, and form the time-series

qt = a cos(ωt + λ). (2.100)

Once λ is realized, qt is a deterministic function with periodicity 2π

ω and

phase shift λ but qt is a random function ex ante. We will need the

following two basic trigonometric relations.

Two useful trigonometric relations. Let b and c be constants, and i be

the imaginary number where i

2 = −1. Then

cos(b + c) = cos(b) cos(c) − sin(b) sin(c) (2.101)

eib = cos(b) + isin(b) (2.102)

(2.102) is known as de Moivreís theorem. You can rearrange it to get

cos(b) = (eib + e−ib)

2 , and sin(b) = (eib − e−ib)

2i . (2.103)

29You only need to worry about the interval [0, π] because the cosine function is

symmetric about zeroócos(x) = cos(−x) for 0 ≤ x ≤ π

70 CHAPTER 2. SOME USEFUL TIME-SERIES METHODS

Now let b = ωt and c = λ and use (2.101) to represent (2.100) as

qt = a cos(ωt + λ)

= cos(ωt)[a cos(λ)] − sin(ωt)[a sin(λ)].

Next, build the time-series qt = q1t +q2t from the two sub-series q1t and

q2t, where for j = 1, 2

qjt = cos(ωjt)[aj cos(λj )] − sin(ωjt)[aj sin(λj)],

and ω1 < ω2. The result is a periodic function which is displayed on

the left side of Figure 2.3.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36

-30

-20

-10

0

10

20

30

1 6 11 16 21 26 31 36

Figure 2.3: For 0 ≤ ω1 < ··· < ωN ≤ π, qt = PN

j=1 qjt, where qjt =

cos(ωj t)[aj cos(λj)] − sin(ωj t)[aj sin(λj)]. Left panel: N = 2. Right

panel: N = 1000

The composite process with N = 2 is clearly deterministic but if

you build up the analogous series with N = 100 of these components,

as shown in the right panel of Figure 2.3, the series begins to look like

a random process. It turns out that any stationary random process can

be arbitrarily well approximated in this fashion letting N → ∞.

2.7. FILTERING 71

To summarize at this point, for sufficiently large number N of these

underlying periodic components, we can represent a time-series qt as

qt = X

N

j=1

cos(ωj t)uj − sin(ωj t)vj, (2.104)

where uj = aj cos(λj ) and vj = aj sin(λj), E(u2

i) = σ2

i , E(uiuj)=0,

i 6= j, E(v2

i) = σ2

i , E(vivj)=0, i 6= j.

Now suppose that E(uivj) = 0 for all i, j and let N → ∞.

30 You

are carving the interval into successively more subintervals and are

cramming more ωj into the interval [0, π]. Since each uj and vj is

associated with an ωj , in the limit, write u(ω) and v(ω) as functions

of ω. For future reference, notice that because cos(−a) = cos(a), we

have u(−ω) = u(ω) whereas because sin(−a) = − sin(a), you have

v(−ω) = −v(ω). The limit of sums of the areas in these intervals is the

integral

qt =

Z π

0

cos(ωt)du(ω) − sin(ωt)dv(ω). (2.105)

Using (2.103), (2.105) can be represented as

qt =

Z π

0

eiωt + e−iωt

2

du(ω) −

Z π

0

eiωt − e−iωt

2i

dv(ω)

| {z }

(a)

. (2.106)

Let dz(ω) = 1

2 [du(ω) + idv(ω)]. The second integral labeled (a) can be

simplified as ⇐(49)

Z π

0

eiωt − e−iωt

2i

dv(ω) = Z π

0

eiωt − e−iωt

2i

Ã

2dz(ω) − du(ω)

i

!

=

Z π

0

e−iωt − eiωt

2 (2dz(ω) − du(ω))

=

Z π

0

(e−iωt − eiωt

)dz(ω) + Z π

0

eiωt − e−iωt

2

du(ω).

Substitute this last result back into (2.106) and cancel terms to get ⇐(50)

30This is in fact not true because E(uivi) 6= 0, but as we let N → ∞, the

importance of these terms become negligible.

Tải ngay đi em, còn do dự, trời tối mất!