Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Đặc trưng của vành Artin thông qua tính tốt và tính nửa Hopfian
MIỄN PHÍ
Số trang
3
Kích thước
202.0 KB
Định dạng
PDF
Lượt xem
1043

Đặc trưng của vành Artin thông qua tính tốt và tính nửa Hopfian

Nội dung xem thử

Mô tả chi tiết

CHARACTERIZATIONS OF ARTINIAN RINGS BY THE GOODNESS AND

SEMI-HOPFIANESS

Tran Nguyen An∗

Thai Nguyen University of Education

Tãm t¾t

Bµi b¸o ®­a ra hai ®Æc tr­ng míi cña vµnh Artin th«ng qua tÝnh tèt vµ tÝnh nöa Hopfian.

Tõ kho¸: Vµnh vµ m«®un Artin, m«®un nguyªn s¬, m«®un tèt, m«®un nöa Hopfian.

1 Introduction

Throughout of this paper, let R be a commuta￾tive ring. This paper is concerned with the no￾tions of good modules and semi-Hopfian mod￾ules: Let M be an R−module and N a proper

submodule of M. We say that N is primary

if the multiplication by x on M/N is nilpotent

for all x ∈ R. In this case, the set of all nilpo￾tent elements is a prime ideal of R, say p, and

N is called p−primary. An R−module M is

called good if there is a composition

0 = \n

i=1

Ni

of zero-submodule of M into primary submod￾ules Ni

. An R−module M is called semi￾Hopfian if for all x ∈ R, the multiplication by

x on M is an isomorphism provided it is sur￾jective.

Two well known characterizations of Artinian

rings (see [Mat]) are as follows: R is Artinian

if and only if R is Noetherian and dim R = 0, if

and only if R is of finite length. Recently, there

are some characterizations of Artinian rings via

goodness and semi-Hopfianess.

Theorem. (See [KA], Theorem 1.1). For any

commutative Noetherian ring R, the following

statement are equivalent.

(i) R is Artinian.

(ii) Every non-zero R−module is good.

(iii) Every non-zero R−module is semi￾Hopfian.

The purpose of this paper is to extend the

above characterizations via the goodness and

semi-Hopfianess for only Artinian R−modules.

The following theorem is the main result of this

paper.

Theorem 1.1. Let R be a commutative

Noetherian ring. Then the following state￾ments are equivalent:

(i) R is Artinian.

(ii) Every non-zero Artinian R−module is

good.

(iii) Every non-zero Artinian R−module is

semi-Hopfian.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we recall first some

facts of Artinian modules. The notion of sec￾ondary representation is in some sense dual to

the known concept of primary decomposition.

Here we recall this by using the terminology

of I. G. Macdonal [Mac]: An R−module M is

called secondary if the multiplication by x on

M is surjective or nilpotent. In this case, the

set of all nilpotent elements is a prime ideal of

0

*Tel: 0978557969, e-mail: [email protected]

148Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Tải ngay đi em, còn do dự, trời tối mất!