Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Analysis and design of descriptor linear systems
Nội dung xem thử
Mô tả chi tiết
Advances in Mechanics and Mathematics
Volume 23
Series Editors:
David Y. Gao, Virginia Polytechnic Institute and State University
Ray W. Ogden, University of Glasgow
Romesh C. Batra, Virginia Polytechnic Institute and State University
Advisory Board:
Ivar Ekeland, University of British Columbia
Tim Healey, Cornell University
Kumbakonom Rajagopal, Texas A&M University
Tudor Ratiu, Ecole Polytechnique F´ ´ ed´erale
David J. Steigmann, University of California, Berkeley
For more titles in this series, go to
http://www.springer.com/series/5613
Guang-Ren Duan
Analysis and Design
of Descriptor Linear Systems
ABC
Guang-Ren Duan
Harbin Institute of Technology
Center for Control Theory and Guidance Technology
Harbin, 150001
P. R. China
ISSN 1571-8689 e-ISSN 1876-9896
ISBN 978-1-4419-6396-3 e-ISBN 978-1-4419-6397-0
DOI 10.1007/978-1-4419-6397-0
Springer New York Dordrecht Heidelberg London
Library of Congress Control Number: 2010933873
Mathematics Subject classification (2010): 58E25, 93B52, 93C05, 93C35
c Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
To Shichao and Jiefu
Preface
Descriptor linear systems theory is an important part in the general field of control
systems theory, and has attracted much attention in the last two decades. In spite
of the fact that descriptor linear systems theory has been very rich in content, there
have been only a few comprehensive books on this topic, e.g., Campbell (1980),
Campbell (1982), and Dai (1989b). There do exist some other books and some PhD
thesises related to descriptor systems, but they are all focused on very special topics.
This book aims to provide a relatively systematic introduction to the basic results
in descriptor linear systems theory. The whole book has 11 chapters, and focuses
on the analysis and design problems on continuous-time descriptor linear systems.
Materials about analysis and design of discrete-time descriptor linear systems are
not included. Besides most of the fundamental context, it also contains some of the
author’s research work, which are reflected in the topics of response analysis, regularization, dynamical order assignment, eigenstructure assignment, and parametric
approaches for observer design, etc.
Many researchers in the world have made great contribution to descriptor linear
systems theory. Owing to length limitation and the structural arrangement of the
book, many of their published results are not included or even not cited. I would
extend my apologies to these researchers.
Most of the materials of the book have been lectured by the author himself in the
spring terms of 20022005 in a postgraduate course at Harbin Institute of Technology. My colleagues, Prof. Zhi-Bin Yan and Dr Cang-Hua Jiang, assisted me
in lecturing this course in the spring terms of 20062008, respectively, and have
helped a lot in proofreading the manuscripts. Prof. Zhi-Bin Yan, Prof. Xian Zhang
and Dr Ai-Guo Wu have all coauthored with me a few papers, which have been included in this book. Here, I would like to express my heartfelt appreciation of their
contribution.
All my graduate and PhD students and those who took the graduate course
“Descriptor Linear Systems” at Harbin Institute of Technology in the spring terms
of 20022008 have offered tremendous help in finding the errors and typos in the
manuscripts. Their help has greatly improved the quality of the manuscripts, and is
indeed very much appreciated. Dr Hai-Hua Yu, Dr Ai-Guo Wu, Dr Bing Liang,
Dr Yan-Ming Fu, Dr Ying Zhang, Dr Liu Zhang, Dr Yong-Zheng Shan, and
Dr Hong-Liang Liu, who were really my PhD students years ago, have helped me
vii
viii Preface
with the indices, the references, and the parts of the revision of the book. My present
Ph.D students, Mr. Da-Ke Gu, Mr. Shi-Jie Zhang, Ms. Ling-Ling Lv, Mr. Yan-Jiang
Li, Ms. Shi Li, and Mr. Guang-Bin Cai, all helped me with the examples of the book.
Particularly, Dr Hai-Hua Yu, besides all the above, has helped me with the whole
formatting of the book. I would extend my great thanks to all of them. My thanks
would also go to my colleague, Prof. Hui-Jun Gao, who once was in 2003 a student
in my class of the course, has proofread several chapters of the book as well.
I would also like to thank my wife, Ms Shi-Chao Zhang, for her continuous support in every aspect. Sincere thanks also go to my secretary, Ms Ming-Yan Liu, for
helping me in typing a few chapters of the manuscripts. Part of the book was written
when I was with the Queen’s University of Belfast, UK, from September 1998 to
October 2002. I would like to thank Professor G. W. Irwin and Dr S. Thompson
for their help, suggestions, and support. The reviewers of the book have given some
real valuable and helpful comments and suggestions, which are indeed very much
appreciated.
The author would like to gratefully acknowledge the financial support kindly provided by the many sponsors, including NSFC, the National Natural Science Foundation of China (National Science Fund for Distinguished Young Scholar’s Grant
No.60474015), the Ministry of Education (Program of The New Century Excellent
Talents in University and the Chang Jiang Scholars Program), and also EPSRC, the
UK Engineering and Physical Science Research Council (GR/K83861/01).
At the last, let me thank in advance all the readers for choosing to read this
book. I would be indeed very grateful if readers could possibly provide, via email:
[email protected], feedback about any problems found. Your help will certainly
make any future editions of the book much better.
Harbin Institute of Technology, Guang-Ren Duan
12 December 2009
Contents
Preface.............................................................................. vii
List of Notation .................................................................... xvii
1 Introduction .................................................................. 1
1.1 Models for Descriptor Systems....................................... 1
1.1.1 State Space Representation.................................. 1
1.1.2 Time-Invariant Descriptor Linear Systems ................. 3
1.2 Examples of Descriptor Linear Systems ............................. 5
1.2.1 Electrical Circuit Systems................................... 5
1.2.2 Large-Scale Systems with Interconnections................ 7
1.2.3 Constrained Mechanical Systems........................... 8
1.2.4 Robotic System–A Three-Link Planar Manipulator ....... 12
1.3 Problems for Descriptor Linear Systems Analysis and Design ..... 18
1.3.1 Feedback in Descriptor Linear Systems .................... 18
1.3.2 Problems for Descriptor Linear Systems Analysis......... 22
1.3.3 Problems for Descriptor Linear Systems Design........... 24
1.4 Overview of the Book ................................................. 28
1.5 Notes and References ................................................. 29
Part I Descriptor Linear Systems Analysis
2 Equivalence and Solutions of Descriptor Linear Systems............... 35
2.1 Restricted System Equivalence ....................................... 35
2.1.1 The Definition ............................................... 36
2.1.2 Common Properties ......................................... 38
2.2 Canonical Equivalent Forms.......................................... 40
2.2.1 Dynamics Decomposition Form ............................ 40
2.2.2 The Kronecker Form ........................................ 43
2.2.3 Canonical Equivalent Forms for Derivative Feedback ..... 44
ix
x Contents
2.3 Solutions of Descriptor Linear Systems.............................. 50
2.3.1 System Decomposition Based on the
Kronecker Form ............................................. 50
2.3.2 Solution to the Basic Types of Equations .................. 51
2.4 Notes and References ................................................. 55
3 Regular Descriptor Linear Systems ....................................... 57
3.1 Regularity of Descriptor Linear Systems ............................ 57
3.1.1 The Definition and Its Relation with Solutions ............ 57
3.1.2 Criteria for Regularity ....................................... 61
3.2 Equivalence of Regular Descriptor Linear Systems ................. 64
3.2.1 Standard Decomposition Form.............................. 65
3.2.2 The Inverse Form ........................................... 70
3.3 Transfer Function Matrices ........................................... 72
3.3.1 The Definition ............................................... 73
3.3.2 Properties .................................................... 74
3.4 State Responses of Regular Descriptor Linear
Systems: Distributional Solutions .................................... 75
3.4.1 Solutions of Slow and Fast Subsystems .................... 76
3.4.2 The Distributional Solutions ................................ 80
3.4.3 Examples..................................................... 81
3.5 State Responses of Regular Descriptor Linear
Systems: Classical Solutions ......................................... 83
3.5.1 Consistency .................................................. 84
3.5.2 The Classical Solutions ..................................... 85
3.5.3 The Example ................................................. 88
3.6 Generalized Eigenvalues and Eigenvectors .......................... 89
3.6.1 Finite Eigenvalues and Eigenvectors ....................... 90
3.6.2 Infinite Eigenvalues and Eigenvectors ...................... 95
3.7 Eigenstructure Decomposition with Relation to
Standard Decomposition .............................................. 98
3.7.1 Eigenstructure Decomposition .............................. 98
3.7.2 Relation with Standard Decomposition..................... 102
3.7.3 The Deflating Subspaces .................................... 103
3.8 Stability ................................................................ 107
3.8.1 The Definition ............................................... 107
3.8.2 The Direct Criterion ......................................... 108
3.8.3 Criterion via Lyapunov Equation ........................... 110
3.8.4 Examples..................................................... 111
3.9 Admissibility: Stability plus Impulse-Freeness...................... 113
3.9.1 The Definition ............................................... 113
3.9.2 The Criterion................................................. 114
3.9.3 The Example ................................................. 117
3.10 Notes and References ................................................. 117
Contents xi
4 Controllability and Observability.......................................... 121
4.1 State Reachable Subsets .............................................. 121
4.1.1 The Definition ............................................... 122
4.1.2 Characterization of Rt Œ0 and Rt ........................... 124
4.1.3 Two Examples ............................................... 130
4.2 Controllability ......................................................... 131
4.2.1 C-Controllability............................................. 132
4.2.2 R-Controllability............................................. 135
4.2.3 I-Controllability and S-Controllability ..................... 136
4.3 Observability .......................................................... 142
4.3.1 C-Observability .............................................. 143
4.3.2 R-Observability .............................................. 147
4.3.3 I-Observability and S-Observability ........................ 148
4.4 The Dual Principle .................................................... 153
4.4.1 The Dual System ............................................ 153
4.4.2 The Dual Principle........................................... 154
4.5 Direct Criteria ......................................................... 156
4.5.1 C-Controllability and C-Observability ..................... 157
4.5.2 R-Controllability and R-Observability ..................... 160
4.5.3 I-Controllability and I-Observability ....................... 161
4.5.4 S-Controllability and S-Observability ...................... 165
4.6 Criteria Based on Equivalent Forms.................................. 165
4.6.1 Criteria Based on the Dynamics
Decomposition Form ........................................ 165
4.6.2 Criteria Based on the Inverse Form ......................... 168
4.6.3 Criteria Based on Equivalent Form
for Derivative Feedback ..................................... 173
4.7 System Decomposition................................................ 177
4.7.1 The General Structural Decomposition ..................... 178
4.7.2 Special Cases ................................................ 181
4.8 Transfer Function Matrix and Minimal Realization ................. 185
4.8.1 Transfer Function Matrix.................................... 185
4.8.2 Minimal Realization ......................................... 187
4.9 Notes and References ................................................. 194
Part II Descriptor Linear Systems Design
5 Regularization of Descriptor Linear Systems ............................ 199
5.1 Regularizability under P- (D-) Feedback............................. 199
5.1.1 Proportional Feedback....................................... 199
5.1.2 Derivative Feedback ......................................... 203
5.2 Regularizability under P-D Feedback ................................ 207
5.2.1 Problem Formulation ........................................ 207
5.2.2 Regularizability Conditions ................................. 209
xii Contents
5.3 Regularizing Controllers .............................................. 212
5.3.1 Problem Formulation ........................................ 212
5.3.2 Preliminaries ................................................. 213
5.3.3 The Conclusion .............................................. 214
5.4 Proof of Theorem 5.7 ................................................. 218
5.4.1 Preliminary Results.......................................... 218
5.4.2 Proof of Theorem 5.7 ........................................ 220
5.5 Notes and References ................................................. 224
6 Dynamical Order Assignment and Normalization....................... 227
6.1 Assignable Dynamical Orders ........................................ 227
6.1.1 Full-State Derivative Feedback ............................. 228
6.1.2 Partial-State Derivative Feedback........................... 232
6.2 Dynamical Order Assignment via Full-State Derivative Feedback . 235
6.2.1 Problem Formulation ........................................ 236
6.2.2 Preliminary Results.......................................... 237
6.2.3 Solution to the Problem ..................................... 238
6.3 Dynamical Order Assignment via State Derivative
Feedback with Minimum Norm ...................................... 240
6.3.1 Problem Formulation ........................................ 240
6.3.2 A Preliminary Result ........................................ 241
6.3.3 Solution to the Problem ..................................... 243
6.4 Dynamical Order Assignment via Partial-State
Derivative Feedback .................................................. 247
6.4.1 Problem Formulation ........................................ 247
6.4.2 Preliminary Results.......................................... 248
6.4.3 Solution to the Problem ..................................... 251
6.4.4 The Example ................................................. 254
6.5 Normalization of Descriptor Linear Systems ........................ 256
6.5.1 Normalizability .............................................. 256
6.5.2 Normalizing Controllers..................................... 259
6.6 Notes and References ................................................. 262
7 Impulse Elimination ......................................................... 265
7.1 The Impulse-Free Property ........................................... 265
7.1.1 Basic Criteria ................................................ 266
7.1.2 Criteria Based on Equivalent Forms ........................ 268
7.2 Impulse Elimination by State Feedback .............................. 272
7.2.1 Solution Based on Dynamics Decomposition Forms ...... 272
7.2.2 Solution Based on Standard Decomposition ............... 276
7.2.3 Solution Based on Canonical Equivalent
Form for Derivative Feedback .............................. 279
7.3 Impulse Elimination by Output Feedback............................ 281
7.3.1 Problem Formulation ........................................ 281
7.3.2 The Solution ................................................. 282
Contents xiii
7.4 I-Controllablizability and I-Observablizability ...................... 284
7.4.1 Basic Criterion ............................................... 285
7.4.2 Criteria Based on Equivalent Forms ........................ 289
7.5 Impulsive Elimination by P-D Feedback ............................. 293
7.5.1 Method I ..................................................... 294
7.5.2 Method II..................................................... 298
7.6 Notes and References ................................................. 302
8 Pole Assignment and Stabilization......................................... 305
8.1 Pole Assignment by State Feedback.................................. 305
8.1.1 Problems Formulation ....................................... 305
8.1.2 Pole Assignment under R-Controllability .................. 307
8.1.3 Pole Assignment under S-Controllability .................. 310
8.2 Pole Assignment by P-D Feedback................................... 315
8.2.1 Problem Formulation ........................................ 315
8.2.2 The Solution ................................................. 315
8.3 Stabilizability and Detectability ...................................... 318
8.3.1 Stabilizability ................................................ 319
8.3.2 Detectability ................................................. 321
8.4 Stabilizing Controller Design ......................................... 324
8.4.1 Design Based on Standard Decomposition ................. 324
8.4.2 Design Based on Controllability Canonical Forms ........ 327
8.4.3 Design Based on Lyapunov Theory ........................ 330
8.5 Notes and References ................................................. 333
9 Eigenstructure Assignment................................................. 337
9.1 The Problem ........................................................... 338
9.1.1 The Problem ................................................. 339
9.1.2 Interpretations of Requirements ............................ 340
9.1.3 Problem Decomposition ..................................... 344
9.2 The Parametric Solution .............................................. 345
9.2.1 Solution of Closed-Loop Eigenvectors ..................... 345
9.2.2 Solution of the Gain Matrix K .............................. 347
9.2.3 The Algorithm for Problem 9.1 ............................. 350
9.3 The Left Eigenvector Matrix.......................................... 352
9.3.1 Preliminaries ................................................. 352
9.3.2 The Parametric Expressions................................. 353
9.4 Response of the Closed-Loop System................................ 356
9.4.1 The Canonical Form for the Closed-Loop System ......... 356
9.4.2 The Closed-Loop Response ................................. 358
9.5 An Example ........................................................... 361
9.5.1 The General Solutions....................................... 362
9.5.2 Special Solutions ............................................ 363
9.6 Notes and References ................................................. 365
xiv Contents
10 Optimal Control ............................................................. 369
10.1 Introduction ............................................................ 369
10.2 Optimal Linear Quadratic State Regulation .......................... 371
10.2.1 Problem Formulation ........................................ 371
10.2.2 The Conversion .............................................. 372
10.2.3 The Optimal Regulator ...................................... 375
10.2.4 An Illustrative Example ..................................... 377
10.3 Time-Optimal Control ................................................ 379
10.3.1 Problem Formulation ........................................ 379
10.3.2 Time-Optimal Control of the Slow and Fast Subsystems.. 380
10.3.3 The Solution ................................................. 382
10.4 Notes and References ................................................. 385
11 Observer Design ............................................................. 389
11.1 Introduction ............................................................ 389
11.1.1 State Observers .............................................. 390
11.1.2 Function Kx Observers ..................................... 391
11.2 Descriptor State Observers............................................ 392
11.2.1 Existence Condition ......................................... 392
11.2.2 Design Methods ............................................. 394
11.3 Eigenstructure Assignment Design ................................... 396
11.3.1 Eigenstructure Assignment Result .......................... 397
11.3.2 The Algorithm and Example ................................ 399
11.4 Observer Design with Disturbance Decoupling ..................... 402
11.4.1 Problem Formulation ........................................ 403
11.4.2 Preliminaries ................................................. 403
11.4.3 Constraints for Disturbance Decoupling ................... 406
11.4.4 The Example ................................................. 407
11.5 Normal Reduced-Order State Observers ............................. 409
11.5.1 Normal RankE-Order State Observers ..................... 409
11.5.2 Normal-State Observers of Order n m ................... 412
11.6 Normal Function Kx Observers...................................... 417
11.6.1 Conditions for Normal Function Kx Observers ........... 417
11.6.2 Parametric Design for Normal Function Observers........ 419
11.7 Notes and References ................................................. 424
Part III Appendices
A Some Mathematical Results ................................................ 429
A.1 Delta Function ı./ .................................................... 429
A.2 Laplace Transform .................................................... 432
A.3 Determinants and Inverses of Block Matrices ....................... 434
A.4 Nilpotent Matrices..................................................... 437
A.5 Some Operations of Linear Subspaces ............................... 441
A.6 Kernels and Images of Matrices ...................................... 443
A.7 Singular Value Decomposition ....................................... 445