Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

63 Đề thi thử Đại học 2011 - Đề số 11-15 ppt
MIỄN PHÍ
Số trang
5
Kích thước
554.6 KB
Định dạng
PDF
Lượt xem
767

63 Đề thi thử Đại học 2011 - Đề số 11-15 ppt

Nội dung xem thử

Mô tả chi tiết

- 11 -

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ ÔN THI ĐẠI HỌC MÔN TOÁN – ĐỀ 11

(ĐỀ THAM KHẢO) Thời gian làm bài: 180 phút .

I. PHẦN BẮT BUỘC DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm)

Câu I: (2 điểm) Cho hàm số

2

32

  x

x

y

1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2. Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các đường tiệm cận của (C) tại A và B. Gọi I là giao

điểm của các đường tiệm cận.Tìm điểm M sao cho đường tròn ngoại tiếp ∆ IAB có diện tích nhỏ nhất.

Câu II (2 điểm)

1. Giải phương trình : 

 

     24

cos2sin

2

cossin

2

sin1 2 2 x

x

x

x

x 

2. Giải bất phương trình : 

 

xxxx   x

2

1 log)2(22)144(log

2

1

2

2

Câu III (1 điểm) Tính tích phân  

 

 

e

dxxx

xx

x I

1

2 ln3

ln1

ln

Câu IV (1 điểm)

Cho hình chóp S.ABC có AB = AC = a. BC =

2

a .  aSA 3 , ￾ ￾ 0 SAB SAC   30 . Tính thể tích khối chóp S.ABC.

Câu V (1 điểm) Cho a, b, c là ba số dương thoả mãn : a + b + c =

3

4

. Tìm giá trị nhỏ nhất của biểu thức

3 3 3 3

1

3

1

3

1

accbba

P

 

II. PHẦN TỰ CHỌN (3,0 điểm). Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B.

A.Theo chương trình Chuẩn

Câu VIa (2 điểm)

1. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm A(-1;1) và B(3;3), đường thẳng (D): 3x – 4y + 8 = 0.

Lập phương trình đường tròn qua A, B và tiếp xúc với đường thẳng(D).

2. Trong không gian với hệ toạ độ Oxyz cho hai điểm A(0; 0; -3), B(2; 0; -1) và mp (P) có pt: 3x 8y 7z 1 0    .

Viết pt chính tắc đường thẳng d nằm trên mp (P) và d vuông góc với AB tại giao điểm của đường thẳng AB và (P).

Câu VIIa (1 điểm)

Tìm số nguyên dương n biế t: 2 3 2 2 1 2 1

21 21 2 1 2 1 2 3.2.2 .... ( 1) ( 1)2 .... 2 (2 1)2 40200   

            

k kk n n C C kk C n n C n n n n

B. Theo chương trình Nâng cao

Câu VIb (2 điểm)

1. Trong mặt phẳng với hệ trục toạ độ Oxy cho cho hai đường thẳng 052: 1  yxd   . d2: 3x + 6y – 7 = 0. Lập

phương trình đường thẳng đi qua điểm P( 2; -1) sao cho đường thẳng đó cắt hai đường thẳng d1 và d2 tạo ra một tam

giác cân có đỉnh là giao điểm của hai đường thẳng d1, d2.

2. Trong không gian với hệ trục toạ độ Oxyz cho 4 điểm A( 1; -1; 2), B( 1; 3; 2), C( 4; 3; 2), D( 4; -1; 2) và mặt phẳng

(P) có phương trình: zyx  02 . Gọi A’là hình chiêú của A lên mặt phẳng Oxy. Gọi ( S) là mặt cầu đi qua 4

điểm A’, B, C, D. Xác định toạ độ tâm và bán kính của đường tròn (C) là giao của (P) và (S).

Câu VIIb (1 điểm): Giải hệ phương trình





  

13 1

2.322

2

213 3

xxyx

yx xy

63 Đề thi thử Đại học 2011 -11- http://www.VNMATH.c

Tải ngay đi em, còn do dự, trời tối mất!