Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Về môđun với epi-dcc
Nội dung xem thử
Mô tả chi tiết
✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✕
P❍❆◆ ❆◆❍ ❚❯❻◆
❱➋ ▼➷✣❯◆ ❱❰■ ❊P■✕❉❈❈
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❑❍❖❆ ❍➴❈
❈❍❯❨➊◆ ◆●⑨◆❍ ✣❸■ ❙➮ ❱⑨ ▲Þ ❚❍❯❨➌❚ ❙➮
✣⑨ ◆➂◆● ✕ ✷✵✷✵
✣❸■ ❍➴❈ ✣⑨ ◆➂◆●
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼ ✖✖✖✖✖✖✕♦✵♦✖✖✖✖✖✖✕
P❍❆◆ ❆◆❍ ❚❯❻◆
❱➋ ▼➷✣❯◆ ❱❰■ ❊P■✕❉❈❈
❈❍❯❨➊◆ ◆●⑨◆❍✿ ✣❸■ ❙➮ ❱⑨ ▲Þ ❚❍❯❨➌❚ ❙➮
▼❶ ❙➮✿ ✻✵✳✹✻✳✵✶✳✵✹
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❑❍❖❆ ❍➴❈
●✐→♦ ✈✐➯♥ ❤÷î♥❣ ❞➝♥✿
●❙✳ ❚❙✳ ▲➯ ❱➠♥ ❚❤✉②➳t
✣⑨ ◆➂◆● ✕ ✷✵✷✵
▲❮■ ❈❆▼ ✣❖❆◆
❚æ✐ ①✐♥ ❝❛♠ ✤♦❛♥ ✤➙② ❧➔ ❝æ♥❣ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ r✐➯♥❣ tæ✐✳ ❈→❝ sè
❧✐➺✉✱ ❦➳t q✉↔ ♥➯✉ tr♦♥❣ ❧✉➟♥ ✈➠♥ ❧➔ tr✉♥❣ t❤ü❝ ✈➔ ❝❤÷❛ tø♥❣ ✤÷ñ❝ ❛✐ ❝æ♥❣
❜è tr♦♥❣ ❜➜t ❦➻ ❝æ♥❣ tr➻♥❤ ♥➔♦ ❦❤→❝✳
❚→❝ ❣✐↔
P❤❛♥ ❆♥❤ ❚✉➜♥
.
INFORMATION PAGE OF MASTER THESIS
Name of thesis: On 1nodules with epi-DCC
:Major: Algrebra and N u1nber theory
Full name of rviaster student: Phai. Anh uan
Suppervisor: Prof. Dr. Le Van Thuyet
Training institution: The University of Da Nang, University of Education
Abstract: Modular theory has an important role when studying Algebra and there a.re
many new issues to be investigated. Vie say that a set O of submodules of If satisfies
the descending chain condition ( often abbreviated as DCC) if in eYery descending cha.in
of submodules
of rt there exists n EN such that Ln+i = Ln (for all i = 1, 2, ... ). The family of modules satisfying the descending chain condition and its related problems are the basis
for studying other issues. In a paper by R. Dastanpour and A. Ghorbani named "Modules with epimorphism on chains of submodules", an R-module is said to be satisfied
epi-DCC on submodules if in every descending cha.in of submodules of 11, except probably a finite number, each module in chain is a homomorphic image of the preceding.
Artinian modules, semisimple modules and free modules over commutative principal
ideal domains are examples of such modules. A semiprime right Goldie ring satisfies
epi-DCC on right ide.ls if and only if it is a finite product of full matrix rings over
principal right ideal domains. Based on this article) our thesis gives an overview of some
results on the properties of modules with epi-DCC, studies other special properties and
relationships with related rings.
Key words: epi-DCC, epi-DCC modules, epi-DCC decreasing sequences,
descending cha.in condition, epi-DCC on submodules.
Student
Prof. Dr. Le Van Thuyet Phan Anh Tuan
▲❮■ ❈❷▼ ❒◆
❱î✐ t➻♥❤ ❝↔♠ ❝❤➙♥ t❤➔♥❤✱ t→❝ ❣✐↔ ①✐♥ ✤÷ñ❝ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ✤➳♥
tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ P❤↕♠ ✕ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ P❤á♥❣ ✣➔♦ t↕♦ ❙❛✉ ✣↕✐ ❤å❝✱
❑❤♦❛ ❚♦→♥✱ q✉þ t❤➛②✱ ❝æ ❣✐→♦ ❣✐↔♥❣ ❞↕② ❧î♣ ❈❛♦ ❤å❝ ✣↕✐ sè ✈➔ ❧þ t❤✉②➳t
sè ❑✸✺ ✤➣ t➟♥ t➻♥❤ ❤÷î♥❣ ❞➝♥✱ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ ❝❤♦ t→❝ ❣✐↔ tr♦♥❣ s✉èt
q✉→ tr➻♥❤ ❤å❝ t➟♣✱ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳
✣➦❝ ❜✐➺t✱ t→❝ ❣✐↔ ①✐♥ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ✤➳♥ ●❙✳ ❚❙✳ ▲➯ ❱➠♥
❚❤✉②➳t✱ ❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✕ ✣↕✐ ❤å❝ ❍✉➳✱ ♥❣÷í✐ ❚❤➛② trü❝ t✐➳♣
❣✐↔♥❣ ❞↕②✱ ❤÷î♥❣ ❞➝♥ ❦❤♦❛ ❤å❝✳ ❱î✐ ♥❤ú♥❣ ❦✐➳♥ t❤ù❝✱ ❦✐♥❤ ♥❣❤✐➺♠ q✉þ
❜→✉✱ ❚❤➛② ✤➣ ➙♥ ❝➛♥ ❝❤➾ ❜↔♦ ❣✐ó♣ ✤ï t→❝ ❣✐↔ tü t✐♥✱ ✈÷ñt q✉❛ ♥❤ú♥❣ ❦❤â
❦❤➠♥✱ trð ♥❣↕✐ tr♦♥❣ q✉→ tr➻♥❤ ♥❣❤✐➯♥ ❝ù✉ ✤➸ ❤♦➔♥ t❤➔♥❤ ❧✉➟♥ ✈➠♥✳
❚→❝ ❣✐↔ ①✐♥ ✤÷ñ❝ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ✤➳♥ P●❙✳ ❚❙✳ ❚r÷ì♥❣ ❈æ♥❣ ◗✉ý♥❤
❚r÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✕ ✣↕✐ ❤å❝ ✣➔ ◆➤♥❣✱ ❚❤➛② ✤➣ ❧✉æ♥ t❤❡♦ s→t ❧î♣
❈❛♦ ❤å❝ ✣↕✐ sè ✈➔ ❧þ t❤✉②➳t sè ❑✸✺ ❤÷î♥❣ ❞➝♥ ✈➔ t↕♦ ✤✐➲✉ ❦✐➺♥ ✤➸ ❧î♣ ❝â
✤÷ñ❝ ❦➳t q✉↔ ❤å❝ tèt ♥❤➜t✳
❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❝→❝ ❜↕♥ ❤å❝ ✈✐➯♥ ❧î♣ ❈❛♦ ❤å❝ ✣↕✐ sè ✈➔ ❧þ
t❤✉②➳t sè ❑✸✹✱ ❑✸✺✱ ❑✸✻ ✈➔ ❜↕♥ ❜➧ ♥❣÷í✐ t❤➙♥ ✤➣ ✤ë♥❣ ✈✐➯♥✱ ❣✐ó♣ ✤ï✱ t↕♦
✤✐➲✉ ❦✐➺♥ ✤➸ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❤å❝✳
❉ò t→❝ ❣✐↔ ✤➣ r➜t ❝è ❣➢♥❣✱ s♦♥❣ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ t❤➸ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣
t❤✐➳✉ sât✱ ❦➼♥❤ ♠♦♥❣ ♥❤➟♥ ✤÷ñ❝ sü ❣â♣ þ✱ ❝❤➾ ❞➝♥ ❝õ❛ q✉þ t❤➛②✱ ❝æ ❣✐→♦✱
❝→❝ ❜↕♥ ✤ç♥❣ ♥❣❤✐➺♣ ✈➔ ♥❤ú♥❣ ♥❣÷í✐ q✉❛♥ t➙♠ ✤➳♥ ✤➲ t➔✐ ♥❣❤✐➯♥ ❝ù✉✳
❳✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ✦
❚→❝ ❣✐↔
P❤❛♥ ❆♥❤ ❚✉➜♥