Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

transformer engineering design and practice 1_phần 3 docx
Nội dung xem thử
Mô tả chi tiết
1
1
Transformer Fundamentals
1.1 Perspective
A transformer is a static device that transfers electrical energy from one circuit to
another by electromagnetic induction without the change in frequency. The
transformer, which can link circuits with different voltages, has been instrumental
in enabling universal use of the alternating current system for transmission and
distribution of electrical energy. Various components of power system, viz.
generators, transmission lines, distribution networks and finally the loads, can be
operated at their most suited voltage levels. As the transmission voltages are
increased to higher levels in some part of the power system, transformers again
play a key role in interconnection of systems at different voltage levels.
Transformers occupy prominent positions in the power system, being the vital
links between generating stations and points of utilization.
The transformer is an electromagnetic conversion device in which electrical
energy received by primary winding is first converted into magnetic energy which
is reconverted back into a useful electrical energy in other circuits (secondary
winding, tertiary winding, etc.). Thus, the primary and secondary windings are not
connected electrically, but coupled magnetically. A transformer is termed as either
a step-up or step-down transformer depending upon whether the secondary
voltage is higher or lower than the primary voltage, respectively. Transformers can
be used to either step-up or step-down voltage depending upon the need and
application; hence their windings are referred as high-voltage/low-voltage or
high-tension/low-tension windings in place of primary/secondary windings.
Magnetic circuit: Electrical energy transfer between two circuits takes place
through a transformer without the use of moving parts; the transformer therefore
has higher efficiency and low maintenance cost as compared to rotating electrical
Copyright © 2004 by Marcel Dekker, Inc.
2 Chapter 1
machines. There are continuous developments and introductions of better grades
of core material. The important stages of core material development can be
summarized as: non-oriented silicon steel, hot rolled grain oriented silicon steel,
cold rolled grain oriented (CRGO) silicon steel, Hi-B, laser scribed and
mechanically scribed. The last three materials are improved versions of CRGO.
Saturation flux density has remained more or less constant around 2.0 Tesla for
CRGO; but there is a continuous improvement in watts/kg and volt-amperes/kg
characteristics in the rolling direction. The core material developments are
spearheaded by big steel manufacturers, and the transformer designers can
optimize the performance of core by using efficient design and manufacturing
technologies. The core building technology has improved from the non-mitred to
mitred and then to the step-lap construction. A trend of reduction of transformer
core losses in the last few years is the result of a considerable increase in energy
costs. The better grades of core steel not only reduce the core loss but they also
help in reducing the noise level by few decibels. Use of amorphous steel for
transformer cores results in substantial core loss reduction (loss is about one-third
that of CRGO silicon steel). Since the manufacturing technology of handling this
brittle material is difficult, its use in transformers is not widespread.
Windings: The rectangular paper-covered copper conductor is the most
commonly used conductor for the windings of medium and large power
transformers. These conductors can be individual strip conductors, bunched
conductors or continuously transposed cable (CTC) conductors. In low voltage
side of a distribution transformer, where much fewer turns are involved, the use of
copper or aluminum foils may find preference. To enhance the short circuit
withstand capability, the work hardened copper is commonly used instead of soft
annealed copper, particularly for higher rating transformers. In the case of a
generator transformer having high current rating, the CTC conductor is mostly
used which gives better space factor and reduced eddy losses in windings. When
the CTC conductor is used in transformers, it is usually of epoxy bonded type to
enhance its short circuit strength. Another variety of copper conductor or
aluminum conductor is with the thermally upgraded insulating paper, which is
suitable for hot-spot temperature of about 110°C. It is possible to meet the special
overloading conditions with the help of this insulating paper. Moreover, the aging
of winding insulation material will be slowed down comparatively. For better
mechanical properties, the epoxy diamond dot paper can be used as an interlayer
insulation for a multi-layer winding. High temperature superconductors may find
their application in power transformers which are expected to be available
commercially within next few years. Their success shall depend on economic
viability, ease of manufacture and reliability considerations.
Insulation and cooling: Pre-compressed pressboard is used in windings as
opposed to the softer materials used in earlier days. The major insulation (between
windings, between winding and yoke, etc.) consists of a number of oil ducts
Copyright © 2004 by Marcel Dekker, Inc.
Transformer Fundamentals 3
formed by suitably spaced insulating cylinders/barriers. Well profiled angle rings,
angle caps and other special insulation components are also used.
Mineral oil has traditionally been the most commonly used electrical insulating
medium and coolant in transformers. Studies have proved that oil-barrier
insulation system can be used at the rated voltages greater than 1000 kV. A high
dielectric strength of oil-impregnated paper and pressboard is the main reason for
using oil as the most important constituent of the transformer insulation system.
Manufacturers have used silicon-based liquid for insulation and cooling. Due to
non-toxic dielectric and self-extinguishing properties, it is selected as a
replacement of Askarel. High cost of silicon is an inhibiting factor for its
widespread use. Super-biodegradable vegetable seed based oils are also available
for use in environmentally sensitive locations.
There is considerable advancement in the technology of gas immersed
transformers in recent years. SF6 gas has excellent dielectric strength and is nonflammable. Hence, SF6 transformers find their application in the areas where firehazard prevention is of paramount importance. Due to lower specific gravity of
SF6 gas, the gas insulated transformer is usually lighter than the oil insulated
transformer. The dielectric strength of SF6 gas is a function of the operating
pressure; the higher the pressure, the higher the dielectric strength. However, the
heat capacity and thermal time constant of SF6 gas are smaller than that of oil,
resulting in reduced overload capacity of SF6 transformers as compared to oilimmersed transformers. Environmental concerns, sealing problems, lower
cooling capability and present high cost of manufacture are the challenges which
have to be overcome for the widespread use of SF6 cooled transformers.
Dry-type resin cast and resin impregnated transformers use class F or C
insulation. High cost of resins and lower heat dissipation capability limit the use of
these transformers to small ratings. The dry-type transformers are primarily used
for the indoor application in order to minimize fire hazards. Nomex paper
insulation, which has temperature withstand capacity of 220°C, is widely used for
dry-type transformers. The initial cost of a dry-type transformer may be 60 to 70%
higher than that of an oil-cooled transformer at current prices, but its overall cost
at the present level of energy rate can be very much comparable to that of the oilcooled transformer.
Design: With the rapid development of digital computers, the designers are freed
from the drudgery of routine calculations. Computers are widely used for
optimization of transformer design. Within a matter of a few minutes, today’s
computers can work out a number of designs (by varying flux density, core
diameter, current density, etc.) and come up with an optimum design. The real
benefit due to computers is in the area of analysis. Using commercial 2-D/3-D
field computation software, any kind of engineering analysis (electrostatic,
electromagnetic, structural, thermal, etc.) can be performed for optimization and
reliability enhancement of transformers.
Copyright © 2004 by Marcel Dekker, Inc.