Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Số phần tử của một tập hợp, tập hợp Toán 6
Nội dung xem thử
Mô tả chi tiết
W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | 1
Vững vàng nền tảng, Khai sáng tương lai
SỐ PHẦN TỬ CỦA MỘT TẬP HỢP, TẬP HỢP CON
1. Phương pháp giải
1.1. Số phần tử của một tập hợp
Một tập hợp có thể có một phần tử, có nhiều phần tử, có vô số phần tử hoặc cũng có thể không có phần tử
nào.
Tập hợp không có phần tử nào được gọi là tập hợp rỗng. Kí hiệu: ∅
Công thức tính số phần tử của tập hợp
Tập hợp các số tự nhiên từ a đến b có : b – a + 1 phần tử
Tập hợp các số chẵn từ số chẵn a đến số chẵn b có : (b – a) : 2 + 1 phần tử
Tập hợp các số lẻ từ số lẻ m đến số lẻ n có : (n – m): 2 + 1 phần tử
Tập hợp các số tự nhiên từ a đến b, hai số kế tiếp cách nhau d đơn vị, có : (b – a): d +1 phần tử
Cách tính tổng của một dãy số
- Tính số số hạng: Áp dụng công thức tính số phần tử của tập hợp
- Tính tổng: (số hạng cuối + số hạng đầu). số số hạng : 2
1.2. Tập hợp con
Cho hai tập hợp A và B. Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A được gọi là
con của tập hợp B.
Kí hiệu: A ⊂ B hay B ⊃ A
Đọc là A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A
• Chú ý:
- Mỗi tập hợp khác thì có ít nhất hai tập hợp con là tập hợp ∅ và chính nó
- Nếu A ⊂ B và B ⊂ A thì A = B
- Nếu tập hợp A có k phần tử thì tập hợp A có 2k tập con
2. Ví dụ minh họa
Ví dụ 1: Viết các tập hợp sau và cho biết mỗi tập hợp có bao nhiêu phần tử
a. Tập hợp A gồm các số tự nhiên sao cho x+ 3 = 12
b. Tập hợp B gồm các số tự nhiên sao cho x.0 = 0
c. Tập hợp C gồm các số tự nhiên sao cho x < 4
d. Tập hợp D gồm các số tự nhiên sao cho 0.x = 4
Hướng dẫn giải:
a. Ta có
x + 3 = 12
x = 12 -3
x = 9
vậy A = {9} có 1 phần tử
b. Ta có