Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nguyên lý cực tiểu đối với Hàm đa điều hòa dưới
Nội dung xem thử
Mô tả chi tiết
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
LÊ THỊ HỒNG
NGUYÊN LÝ CỰC TIỂU
ĐỐI VỚI HÀM ĐA ĐIỀU HOÀ DƯỚI
LUẬN VĂN THẠC SỸ TOÁN HỌC
THÁI NGUYÊN – 2009
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC SƯ PHẠM
LÊ THỊ HỒNG
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
NGUYÊN LÝ CỰC TIỂU
ĐỐI VỚI HÀM ĐA ĐIỀU HOÀ DƯỚI
Chuyên ngành: GIẢI TÍCH
Mã số: 60.46.01
LUẬN VĂN THẠC SỸ TOÁN HỌC
Người hướng dẫn khoa học:
PGS.TS. PHẠM HIẾN BẰNG
THÁI NGUYÊN – 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
LỜI CẢM ƠN
Bản luận văn được hoàn thành tại Trường Đại học Sư phạm - Đại
học Thái Nguyên dưới sự hướng dẫn tận tình của PGS-TS. Phạm Hiến
Bằng. Nhân dịp này tôi xin bày tỏ lòng biết ơn Thầy về sự hướng dẫn
hiệu quả cùng những kinh nghiệm trong quá trình học tập, nghiên cứu và
hoàn thành luận văn.
Xin chân thành cảm ơn Ban chủ nhiệm Khoa Sau Đại học, Ban chủ
nhiệm Khoa Toán, các thầy cô giáo Trường Đại học sư phạm - Đại học
Thái Nguyên, Viện Toán học và Trường Đại học Sư phạm Hà Nội đã
giảng dạy và tạo điều kiện thuận lợi cho tôi trong quá trình học tập và
nghiên cứu khoa học.
Xin chân thành cảm ơn Trường Đại học Sư phạm - ĐHTN, Trường
THPT Bắc Kạn cùng các đồng nghiệp đã tạo điều kiện giúp đỡ tôi về
mọi mặt trong quá trình học tập và hoàn thành bản luận văn này.
Bản luận văn chắc chắn sẽ không tránh khỏi những khiếm khuyết vì
vậy rất mong nhận được sự đóng góp ý kiến của các thầy cô giáo và các
bạn học viên để luận văn này được hoàn chỉnh hơn.
Cuối cùng xin cảm ơn gia đình và bạn bè đã động viên, khích lệ tôi
trong thời gian học tập, nghiên cứu và hoàn thành luận văn.
Thái Nguyên, tháng 09 năm 2009
Tác giả
Lê Thị Hồng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
MỤC LỤC
Trang
MỞ ĐẦU 1
Chương 1. MỘT SỐ KIẾN THỨC CHUẨN BỊ 4
1.1. Hàm đa điều hoà dưới 4
1.2. Hàm đa điều hoà dưới cực đại 10
1.3. Hàm cực trị tương đối. 15
1.4. Bổ đề Cartan –Boutroux và nguyên lý cực tiểu 19
1.5. Toán tử Monge-Ampe 21
1.6. Khối lượng xạ ảnh và các số Lelong 21
Chương 2. NGUYÊN LÝ CỰC TIỂU ĐỐI VỚI CÁC HÀM ĐA
ĐIỀU HÒA DƯỚI
24
2.1. Nguyên lý cực tiểu đối với thế vị logarit 24
2.2. Cận dưới đối với hàm đa điều hoà dưới 33
2.3. Nguyên lý cực tiểu đối với hàm đa điều hòa dưới 40
2.4. Nguyên lý cực tiểu đối với hàm tựa đa điều hoà dưới 45
KẾT LUẬN 50
TÀI LIỆU THAM KHẢO 51
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
1
MỞ ĐẦU
1. Lý do chọn đề tài
Trong giải tích phức một biến số, ngoài nguyên lý cực đại cổ điển, còn
có nguyên lý khác, ít được biết đến nhưng khá là quan trọng. Đó là việc tìm
cận dưới đúng của môđun các hàm chỉnh hình trên một đĩa mở đã cho tại
mọi điểm của một đĩa nhỏ hơn, trừ ra những điểm thuộc về một tập con đặc
biệt chứa 0, theo nghĩa cực đại của nó trên đĩa đã cho. Kích thước của những
tập đặc biệt được ước lượng một cách chính xác theo nghĩa của dung lượng
hoặc dung lượng Hausdorff một chiều. Đó là nguyên lý môđun cực tiểu đối
với hàm chỉnh hình. Nguyên lý này đóng vai trò quan trọng trong nhiều bài
toán bao gồm các hàm hữu tỷ hoặc các hàm phân hình, có thể có nhiều cực
trong một miền đã cho và từ đó cần tìm cận trên của những hàm như thế. Đã
có nhiều người quan tâm nghiên cứu đến nguyên lý này như B.Ya.Levin,
A.Yger, A.Zeriahi,... Ở đây chúng tôi chọn đề tài “Nguyên lý cực tiểu đối với
hàm đa điều hoà dưới” , trình bày các kết quả của A. Zeriahi về tổng quát
hóa nguyên lý mô đun cực tiểu cổ điển đối với các hàm chỉnh hình một biến
phức cho các lớp khác nhau của hàm đa điều hòa dưới, dựa vào bổ đề nổi
tiếng của Cartan-Boutroux.
2. Mục đích và nhiệm vụ nghiên cứu
2.1. Mục đích nghiên cứu
Mục đích chính của Luận văn là trình bày việc tổng quát hoá các lớp
khác nhau các hàm đa điều hoà dưới đối với nguyên lý mô đun cực tiểu cổ
điển các hàm chỉnh hình một biến phức, dựa vào bổ đề Cartan – Boutroux:
- Tổng quát hóa bổ đề Cartan-Boutroux về thế vị lôgarit trong
n
£
cũng
như trình bày nguyên lý cực tiểu các hàm đa điều hòa dưới trên hình cầu
Euclid trong
n
£ .