Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nghiên cứu ứng dụng mạng Nơron truyền thẳng nhiều lớp trong điều khiển thích nghi vị trí động cơ điện một chiều khi có thông số và tải thay đổi
Nội dung xem thử
Mô tả chi tiết
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
VŨ MẠNH THỦY
NGHIÊN CỨU ỨNG DỤNG
MẠNG NƠRON TRUYỀN THẲNG NHIỀU LỚP TRONG
ĐIỀU KHIỂN THÍCH NGHI VỊ TRÍ ĐỘNG CƠ ĐIỆN MỘT
CHIỀU KHI CÓ THÔNG SỐ VÀ TẢI THAY ĐỔI
LUẬN VĂN THẠC SĨ TỰ ĐỘNG HÓA
THÁI NGUYÊN - 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐHKT CÔNG NGHIỆP
***
CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập - Tự do - Hạnh phúc
---------o0o---------
THUYẾT MINH
LUẬN VĂN THẠC SĨ TỰ ĐỘNG HÓA
ĐỀ TÀI:
NGHIÊN CỨU ỨNG DỤNG
MẠNG NƠRON TRUYỀN THẲNG NHIỀU LỚP TRONG
ĐIỀU KHIỂN THÍCH NGHI VỊ TRÍ ĐỘNG CƠ ĐIỆN MỘT
CHIỀU KHI CÓ THÔNG SỐ VÀ TẢI THAY ĐỔI
Học viên: Vũ Mạnh Thủy
Lớp: CHK10
Chuyên ngành: Tự động hóa
Người HD khoa học: TS. Phạm Hữu Đức Dục
Ngày giao đề tài: 01/02/2009
Ngày hoàn thành: 30/07/2009
KHOA ĐT SAU ĐẠI HỌC NGƯỜI HƯỚNG DẪN
KHOA HỌC
T.S Phạm Hữu Đức Dục
HỌC VIÊN
Vũ Mạnh Thủy
THÁI NGUYÊN – Năm 2009
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
MỤC LỤC
Lời cam đoan Trang
Danh mục các ký hiệu, bảng, các chữ viết tắt
Danh mục các hình vẽ, đồ thị
Phần mở đầu 1
Chƣơng 1: TỔNG QUAN VỀ MẠNG NƠRON NHÂN TẠO 4
1.1 Lịch sử phát triển của mạng nơron nhân tạo 4
1.2 Các tính chất của mạng nơron nhân tạo 5
1.3 Mô hình nơron 5
1.3.1 Mô hình nơron sinh học 5
1.3.2 Nơron nhân tạo 7
1.4 Cấu tạo mạng nơron 10
1.5 Cấu trúc mạng nơron 11
1.6 Phƣơng thức làm việc của mạng nơron 13
1.7 Các luật học 14
1.8 Mạng nơron truyền thẳng và mạng nơron hồi quy 18
1.8.1 Mạng nơron truyền thẳng 18
1.8.1.1 Mạng nơron truyền thẳng một lớp nơron 18
1.8.1.2 Mạng nơron truyền thẳng nhiều lớp nơron 18
1.8.2 Mạng nơron hồi quy 19
1.8.2.1 Mạng hồi quy không hoàn toàn 19
1.8.2.2 Mạng các dãy của Jordan 20
1.8.2.3 Mạng hồi quy đơn giản 21
1.8.2.4 Mạng hồi quy hoàn toàn 21
1.9 Ứng dụng mạng nơron trong điều khiển tự động 22
1.10 Công nghệ phần cứng sử dụng mạng nơron 24
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
1.11 So sánh khả năng của mạng nơron với mạch logic 25
1.12 Kết luận chƣơng 1 25
Chƣơng 2: CÁC PHƢƠNG PHÁP ỨNG DỤNG MẠNG NƠRON
TRONG NHẬN DẠNG VÀ ĐIỀU KHIỂN 26
2.1 Các phƣơng pháp ứng dụng mạng nơron trong nhận dạng 26
2.1.1 Khái quát chung 26
2.1.1.1 Đặt vấn đề 26
2.1.1.2 Định nghĩa 27
2.1.1.3 Sơ lược về sự phát triển của các phương pháp nhận dạng 27
2.1.1.4 Các bước cơ bản để nhận dạng hệ thống 28
2.1.2 Các phương pháp nhận dạng 29
2.1.2.1 Nhận dạng On-line 30
2.1.2.1.1 Phương pháp lặp bình phương cực tiểu 30
2.1.2.1.2 Phương pháp xấp xỉ ngẫu nhiên 31
2.1.2.1.3 Phương pháp lọc Kalman mở rộng 31
2.1.2.2 Nhận dạng Off-line 33
2.1.2.2.1 Phương pháp xấp xỉ vi phân 34
2.1.2.2.2 Phương pháp gradient 34
2.1.2.2.3 Phương pháp tìm kiếm trực tiếp 36
2.1.2.2.4 Phương pháp tựa tuyến tính 36
2.1.2.2.5 Phương pháp sử dụng hàm nhạy 37
2.1.2.3 Nhận dạng theo thời gian thực 37
2.1.3 Mô tả toán học của đối tượng ở rời rạc 38
2.1.4 Mô hình dùng mạng nơron 41
2.1.4.1 Mô hình nhận dạng kiểu truyền thẳng 41
2.1.4.2 Mô hình ngược trực tiếp 45
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
2.1.5 Tính gần đúng hàm số dung mạng nơron 45
2.1.6 Mô hình mạng nơron trong nhận dạng và điều khiển 46
2.2 Các phƣơng pháp ứng dụng mạng nơron trong điều khiển 47
2.2.1 Các phương pháp ứng dụng mạng nơron trong điều khiển 47
2.2.1.1 Điều khiển thích nghi sử dụng nguyên tắc chung 47
2.2.1.2 Điều khiển có tín hiệu chỉ đạo 47
2.2.1.3 Điều khiển theo mô hình 47
2.2.1.4 Điều khiển ngược trực tiếp 49
2.2.1.5 Điều khiển mô hình trong 49
2.2.1.6 Điều khiển tối ưu 49
2.2.1.7 Điều khiển tuyến tính thích nghi 50
2.2.1.8 Phương pháp bảng tra 50
2.2.1.9 Điều khiển lọc 50
2.2.1.10 Điều khiển dự báo 50
2.2.2 Điều khiển thích nghi 51
2.2.2.1 Điều khiển thích nghi 51
2.2.2.2 Phương pháp điều khiển thích nghi theo mô hình mẫu (MRAC) 52
2.3 Kết luận chƣơng 2 54
Chƣơng 3: ỨNG DỤNG MẠNG NƠRON TRUYỀN THẲNG NHIỀU LỚP
ĐIỀU KHIỂN THÍCH NGHI VỊ TRÍ ĐỘNG CƠ ĐIỆN MỘT CHIỀU KHI
CÓ THÔNG SỐ VÀ TẢI THAY ĐỔI 55
3.1 Mô tả động lực học của động cơ một chiều 55
3.1.1. Tổng hợp mạch vòng dòng điện khi bỏ qua sức điện động
của động cơ 55
3.1.2. Tổng hợp hệ thống truyền động điều khiển tốc độ 57
3.1.3. Hệ thống điều chỉnh tốc độ dùng bộ điều chỉnh tốc độ tỷ lệ 57
3.1.4. Cấu trúc hệ điều chỉnh vị trí 59
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
3.1.5. Tìm hàm truyền của hệ thống 60
3.2 Ứng dụng mạng nơron truyền thẳng nhiều lớp trong điều khiển thích nghi
vị trị động cơ điện một chiều khi có thông số thay đổi 62
3.2.1. Bộ điều khiển phản hồi tuyến tính (NARMA-L2) 62
3.2.2. Nhận dạng của mô hình NARMA-L2 62
3.2.3. Bộ điều khiển NARMA-L2 64
3.2.4. Bài toán ví dụ sử dụng khối điều khiển NARMA-L2 66
3.2.5. Kết quả thực nghiệm trên MATLAB 68
3.2.5.1. Số liệu 68
3.2.5.2. Kết quả mô phỏng khi có tải thay đổi 68
3.2.5.3. Kết quả mô phỏng khi có thông số và tải thay đổi 74
3.3. Kết luận chƣơng 3 80
Chƣơng4: KẾT LUẬN CHUNG VÀ KIẾN NGHỊ 81
Tài liệu tham khảo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
DANH MỤC CÁC CHỮ VIẾT TẮT, TIẾNG NƯỚC NGOÀI
STT Ký hiệu Diễn giải
1 Artificial Neural Nơron nhân tạo
2 Artificial Neural Networks Mạng nơron nhân tạo
3 Back Propagation Learaning Rule Luật học lan truyền ngược
4 Bipolar Sigmoid Function Hàm sigmoid 2 cực
5 Fuzzy Loogic mờ
6 Fuzzy Neural Networks Mạng nơron mờ
7 Learing Học
8 Linear Graded Unit-LGU Phần tử graded tuyến tính
9 Linear Threshold Unit-LTU Phần tử ngưỡng tuyến tính
10 Myltilayer Layer Feedforward NetWord Mạng nhiều lớp truyền thẳng
11 Neural Nơron
12 Neural Networks Mạng nơron
13 Output Layer Lớp ra
14 Paramater Learning Học thông số
15 Recall Gọi lại
16 Recurrent Neural Networks Mạng nơron hồi quy
17 Reinforcement Signal Tín hiệu củng cố
18 Reinforcement Learning Học củng cố
19 Rump Function Hàm Rump
20 Self Organizing Tự tổ chức
21 Single Layer Feedforward NetWord Mạng một lớp truyền thẳng
22 Step Function Hàm bước nhảy
23 Structure Learning Học cấu trúc
24 Supervised Learning Học giám sát
25 Threshold Function Hàm giới hạn cứng
26 Unipolar Sigmoid Function Hàm sigmoid 1 cực
27 Unsupervised Learning Học không có giám sát
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ
STT Ký hiệu Diễn giải tên hình vẽ
1 Hình 1.1 Mô hình nơron sinh học
2 Hình 1.2 Mô hình nơron nhân tạo
3 Hình 1.3 Đồ thị các loại hàm chuyển đổi
4 Hình 1.4 Mạng nơron 3 lớp
5 Hình 1.5 Sơ đồ cấu trúc các loại mạng nơron
6 Hình 1.6 Mô hình học có giám sát và học củng cố
7 Hình 1.7 Mô hình học không có giám sát
8 Hình 1.8 Sơ đồ cấu trúc chung của quá trình học
9 Hình 1.9 Mạng nơron truyền thẳng một lớp
10 Hình 1.10 Mạng nơron truyền thẳng nhiều lớp
11 Hình 1.11 Sơ đồ cấu trúc của mạng Jordan
12 Hình 1.12 Sơ đồ cấu trúc mạng nơron hồi quy đơn giản
13 Hình 2.1 Điều khiển theo nguyên tắc phản hồi đầu ra
14 Hình 2.2 Quy trình nhận dạng hệ thống
15 Hình 2.3 Sơ đồ tổng quát nhận dạng thong số mô hình
16 Hình 2.4 Nhận dạng theo phương pháp gradient
17 Hình 2.5 Mô hình dạng 1
18 Hình 2.6 Mô hình dạng 2
19 Hình 2.7 Mô hình dạng 3
20 Hình 2.8 Mô hình dạng 4
21 Hình 2.9 Mô hình nhận dạng kiểu truyền thẳng
22 Hình 2.10 Mô hình nhận dạng kiểu song song
23 Hình 2.11 Mô hình nhận dạng kiểu nối tiếp-song song
24 Hình 2.12 Mô hình nhận dạng ngược trực tiếp
25 Hình 2.13 Mô hình 1
26 Hình 2.14 Mô hình 2
27 Hình 2.15 Mô hình 3
28 Hình 2.16 Mô hình 4
29 Hình 2.17 Mô hình điều khiển trực tiếp
STT Ký hiệu Diễn giải tên hình vẽ
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.Lrc-tnu.edu.vn
30 Hình 2.18 Mô hình điều khiển gián tiếp
31 Hình 2.19 Sơ đồ điều khiển mô hình trong
32 Hình 2.20 Sơ đồ điều khiển theo phương pháp dự báo
33 Hình 2.21 Sơ đồ nguyên lý của phương pháp điểu khiển thích nghi theo
phương pháp mô hình mẫu
34 Hình 2.22 Sơ đồ điều khiển trực tiếp
35 Hình 2.23 Sơ đồ điều khiển gián tiếp
36 Hình 3.1 Sơ đồ khối của mạch vòng dòng điện
37 Hình 3.2 Sơ đồ khối
38 Hình 3.3 Sơ đồ khối của hệ điều chỉnh tốc độ
39 Hình 3.4 Cấu trúc bộ điều chỉnh
40 Hình 3.5 Cấu trúc hệ điều chỉnh vị trí tuyến tính
41 Hình 3.6 Sơ đồ khối của hệ điều chỉnh tốc độ
42 Hình 3.7 Sơ đồ khối tương đương 1 của hệ điều chỉnh tốc độ
43 Hình 3.8 Sơ đồ khối tương đương 2 của hệ điều chỉnh tốc độ
44 Hình 3.9 Sơ đồ khối của hệ điều chỉnh vị trí 1
45 Hình 3.10 Sơ đồ khối tương đương của hệ điều chỉnh vị trí
46 Hình 3.11 Cấu trúc một mạng nơron
47 Hình 3.12 Sơ đồ khối của bộ điều khiển NARMA-L2
48 Hình 3.13 Bộ điều khiển thực hiện với mô hình nhận dạng NARMA-L2
49 Hình 3.14 Sơ đồ điều khiển vị trí nam châm vĩnh cửu
50 Hình 3.15 Đồ thị vị trí mẫu và vị trí sau khi đã điều khiển
51 Hình 3.16 Sơ đồ khối mô tả động cơ một chiều
52 Hình 3.17 Sơ đồ mạng nơron truyền thẳng nhiều lớp điều khiển thích
nghi vị trí động cơ điện một chiều khi có tải thay đổi
53 Hình 3.18 Bảng điều khiển nhận dạng tín hiệu vị trí động cơ một chiều
NARMA-L2
54 Hình 3.19 Dữ liệu vào ra của tín hiệu vị trí động cơ một chiều
55 Hình 3.20 Xuất dữ liệu làm việc
56 Hình 3.21 Nhập dữ liệu vào bộ điều khiển
57 Hình 3.22 Huấn luyện đối tượng với dư liệu đã nhập vào
58 Hình 3.23 Dữ liệu huấn luyện cho bộ điều khiển NN NARMA-L2
STT Ký hiệu Diễn giải tên hình vẽ