Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nghiên cứu ứng dụng mạng nơron truyền thẳng nhiều lớp nhận dạng vị trí rôbốt hai khâu
Nội dung xem thử
Mô tả chi tiết
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
5
LỜI CAM ĐOAN
Tôi xin cam đoan luận văn này là công trình do tôi tổng hợp và nghiên cứu.
Trong luận văn có sử dụng một số tài liệu tham khảo như đã nêu trong phần tài liệu
tham khảo.
Tác giả Luận văn
Nguyễn Đắc Nam
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
6
LỜI NÓI ĐẦU
Trong hệ thống điều khiển hiện đại, có rất nhiều phương pháp điều khiển
đảm bảo được tốt chất lượng điều khiển. Trong điều khiển tự động, để điều khiển
chính xác đối tượng khi chưa biết rõ được thông số, trước tiên ta phải hiểu rõ đối
tượng đó. Đặc biệt đối với các đối tượng phi tuyến ta cần dạng được đặc tính vào-ra
của nó để đảm bảo tạo ra tín hiệu điều khiển thích nghi được lựa chọn chính xác
hơn. Những bộ điều khiển hiện đại thường được sử dụng như lôgic mờ, mạng
nơron, mạng nơron mờ để nhận dạng và điều khiển thích nghi hệ thống phi tuyến.
Trong thời gian của khoá học cao học, chuyên ngành Tự động hoá tại trường
Đại Học Kỹ Thuật Công Nghiệp Thái Nguyên, được sự tạo điều kiện giúp đỡ của
nhà trường và Tiến Sĩ Phạm Hữu Đức Dục em đã lựa chọn đề tài của mình là:
“Nghiên cứu ứng dụng mạng nơron truyền thẳng nhiều lớp nhận dạng vị trí
rôbốt hai khâu”.
Trong khoảng 6 tháng thực hiện đề tài, được sự hướng dẫn nhiệt tình của
Tiến Sĩ Phạm Hữu Đức Dục, sự giúp đỡ của bạn bè cùng với sự nỗ lực, cố gắng của
mình bản luận văn đến nay đã hoàn thành.
Dù đã có nhiều cố gắng, xong bản luận văn vẫn không tránh khỏi những
thiếu sót và hạn chế, em rất mong nhận được sự góp ý của các thầy để bản luận văn
được tốt hơn.
Em xin trân trọng cảm ơn!
Học viên
Nguyễn Đắc Nam
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
7
MỤC LỤC
Trang
Lời cam đoan.
Danh mục các ký hiệu, bảng, các chữ viết tắt.
Danh mục các hình vẽ.
PHẦN MỞ ĐÀU. 1
Chƣơng I- TÔNG QUAN VỀ MẠNG NƠ RON NHÂN TẠO. 5
1.1. Lịch sử phát triển của mạng nơ ron nhân tạo. 5
1.2. Các tính chất của mạng nơ ron nhân tạo. 5
1.3. Mô hình nơ ron. 6
1.3.1.Mô hình nơ ron sinh học. 6
1.3.1.1. chức năng, tổ chức và hoạt động của bộ não con người. 6
1.3.1.2. Mạng nơ ron sinh học. 9
1.3.2. Mạng nơ ron nhân tạo. 10
1.3.2.1. Khái niệm. 10
1.3.2.2. Phân loại mạng nơ ron. 13
1.3.2.3. Các luật học. 15
1.3.3. Mô hình toán học mạng nơ ron truyền thẳng và mạng nơ ron hồi quy. 19
1.3.3.1. Mạng nơ ron truyền thẳng. 19
1.3.3.2. Mạng nơ ron hồi quy. 22
1.4. Quá trình huấn luyện mạng nơ ron nhiều lớp. 24
1.4.1. Quá trình thực hiện. 24
1.4.2. Quy tắc chuỗi. 25
1.4.3. Độ chính xác của lan truyền ngược. 27
1.4.4. Biến thể của lan tryền ngược. 27
1.4.5. Tổng quát.(phép nội suy và phép ngoại suy). 28
1.5. Công nghệ phân cứng sử dụng mạng nơ ron. 31
1.6. So sánh khả năng của mạng nơ ron với mạch logic 32
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
8
KẾT LUẬN CHƢƠNG 1. 33
Chƣơng II- Các phƣơng pháp ứng dụng mạng nơ ron trong nhận dạng và
điều khiển. 34
2.1. Các vấn đề chung. 34
2.2. Các phƣơng pháp ứng dụng mạng nơ ron trong nhận dạng. 34
2.2.1. Cơ sở lý luận. 34
2.2.2. Mô tả toán học của đối tượng ở miền rời rạc. 36
2.2.3. Mô hình dùng mạng nơ ron. 39
2.2.3.1. Mô hình song song. 39
2.2.3.2. Mô hình nối tiếp song song. 39
2.2.3.3. Mô hình ngược trực tiếp. 40
2.2.3.4. Mô hình tổ hợp. 41
2.3. Các phƣơng pháp ứng dụng mạng nơ ron trong điều khiển. 42
2.3.1. Bộ điều khiển đảm bảo tính ổn định vững chắc. 42
2.3.2. Bộ điều khiển thích nghi ngược trực tiếp. 42
2.3.3. Điều khiển phi tuyến mô hình trong. 44
2.3.4. Điều khiển dự báo. 44
2.3.5. Điều khiển thích nghi theo mô hình mẫu (MRAC) 45
2.3.6. Điều khiển thích nghi tự chỉnh. 46
2.3.7. Điều khiển thích nghi bằng mạng nơ ron hồi quy tuyến tính. 46
2.3.8. Điều khiển thích nghi ổn định trực tiếp. 48
2.3.9. Điều khiển tối ưu. 49
2.3.10. Phương pháp bảng tra. 50
2.3.11. Điều khiển lọc. 50
2.4. Những hạn chế và chú ý. 51
KẾT LUẬN CHƢƠNG 2 52
Chƣơng III - Ứng dụng mạng nơ ron truyền thẳng nhiều lớp nhận dạng
vị trí rô bốt hai khâu. 53
3.1. Mạng nơ ron truyền thẳng nhiều lớp 53
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
9
3.1.1. Sơ đồ khối mạng nơ ron truyền thẳng nhiều lớp. 53
3.1.2. Thuật toán học lan truyền ngược của sai lệch. 53
3.2. Ứng dụng mạng nơ ron truyền thẳng nhiều lớp nhận dạng vị trí rô
bốt hai khâu. 57
3.2.1. Phân tích sơ đồ ứng dụng. 57
3.2.2. Mô tả động học của rô bốt hai khâu. 59
3.2.3. Thiết lập mạng nơ ron nhận dạng. 60
3.2.3.1. Thiết lập sơ đồ nhận dạng 60
3.2.4.2. Quá trình nhận dạng. 63
3.2.4.3. Kết quả mô phỏng và nhận dạng. 65
3.2.4.4. Kết luận chương III 74
KẾT LUẬN CHUNG 75
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
10
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ.
STT Ký hiệu Diễn giải tên hình vẽ.
1 Hình 1 Sơ đồ khối điều khiển thích nghi rô bốt hai khâu.
2 Hình 2 Sơ đồ ứng dụng mạng nơ ron nhận dạng vị trí rô bốt hai khâu.
3 Hình 1.1 Mô hình hai nơ ron sinh học.
4 Hình 1.2 Mô hình nơ ron nhân tạo.
5 Hình 1.3a Biểu diễn hình học của hàm Rump
6 Hình 1.3b Biểu diễn hình học của hàm bước nhảy.
7 Hình 1.3c Biểu diễn hình học của hàm giới hạn cứng.
8 Hình 1.3d Biểu diễn hình học của hàm Sigmoid hai cực.
9 Hình 1.4a Mạng một lớp truyền thẳng.
10 Hình 1.4b Mạng nhiều lớp truyền thẳng.
11 Hình 1.4c Mạng nơ ron có phản hồi.
12 Hình 1.4d Mạng nơ ron hồi quy.
13 Hình 1.5 Cấu trúc huấn luyện mạng nơ ron.
14 Hình 1.6 Mô hình học có giám sát và học củng cố.
15 Hình 1.7 Mô hình học không có giám sát.
16 Hình 1.8 Sơ đồ cấu trúc chung của quá trình học.
17 Hình 1.9 Cấu trúc mạng nơ ron một lớp.
18 Hình 1.10 Ký hiệu mạng R đầu vào và S nơ ron.
19 Hình 1.11 Ký hiệu mạng một lớp.
20 Hình 1.12 Cấu trúc mạng nơ ron 3 lớp.
21 Hình 1.13 Ký hiệu mạng nơ ron 3 lớp.
22 Hình 1.14 Ký hiệu mạng một l lớp hồi quy.
23 Hình 1.15 Ký hiệu mạng nơ ron 3 lớp hồi quy.
24 Hình 1.16a
Mạng được huấn luyện theo phương pháp bình phương sai
lệch cực tiểu.
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
11
PHẦN MỞ ĐẦU
1.Lý do lựa chọn đề tài.
Để điều khiển chính xác đối tượng khi chưa biết rõ được thông số, trước tiên
ta phải hiểu rõ đối tượng đó. Đối với đối tượng là phi tuyến như rô bốt, ta cần thực
hiện nhận dạng đặc tính vào ra của nó để đảm bảo tạo ra tín hiệu điều khiển thích
nghi được lựa chọn chính xác hơn. Hiện nay thường sử dụng logic mờ (Fuzzy
Logic), mạng nơ ron ( Neural Networks), và mạng no ron mờ (Fuzzy Neural
Networks) để nhận dạng và điều khiển thích nghi hệ thống phi tuyến.Trong khuôn
khổ của khoá học Cao học, chuyên ngành Tự động hoá tại trường Đại học Kỹ thuật
Công nghiệp Thái Nguyên, được sự tạo điều kiện giúp đỡ của nhà trường và Tiến sĩ
Phạm Hữu Đức Dục, em đã lựa chọn đề tài của mình là “Nghiên cứu ứng dụng
mạng nơ ron truyền thẳng nhiều lớp nhận dạng vị trí rô bốt hai khâu”.
2.Mục đích của đề tài.
Nghiên cứu việc ứng dụng mạng nơ ron trong quá trình nhận dạng và điều
khiển hệ thống phi tuyến nói chung. Đặc biệt đi sâu nghiên cứu mạng nơ ron truyền
thẳng nhiều lớp nhận dạng đặc tính vào – ra của rô bốt hai khâu, làm cơ sở cho việc
tạo ra tín hiệu điều khiển thích nghi được lựa chọn chính xác hơn.
3. Đối tƣợng và phạm vi nghiên cứu.
a/ Đối tượng nghiên cứu.
Đối tượng nghiên cứu của đề tài là sử dụng mạng nơ ron truyền thẳng nhiều
lớp nhận dạng vị trí hai khâu rô bốt.
Sơ đồ hình 1 mô tả một mô hình điều chỉnh thích nghi rô bốt hai khâu theo mô hình
mẫu.
Chương I.Tổng quan về mạng nơ ron nhân tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn
12
Sơ đồ điều khiển được thực hiện theo hai giai đoạn sau đây:
Giai đoạn 1: Sử dụng mạng nơ ron nhận dạng vị trí của rô bốt hai khâu, khi
đó các khoá K mở. Căn cứ vào sai lệch e1 giữa tín hiệu ra của rô bốt (y) và tín hiệu
ra của mạng nơ ron nhận dạng(ymh), mạng nơ ron tiến hành học để nhận dạng đặc
tính vào ra y của rô bốt hai khâu, sao cho tín hiệu mạng nơ ron nhận dạng ymh bám
theo được tín hiệu ra y của rô bốt hai khâu. Với e1= y- ymh
Giai đoạn 2: Căn cứ vào kết quả nhận dạng ta có được mạng nơ ron có thể
thay thế gần đúng cho rô bốt hai khâu từ đó tiến hành điều khiển thích nghi rô bôt
hai khâu theo mô hình mẫu. Các khoá K đóng, dựa vào bộ thông số sai lệch (e2, 2
e
) giữa tín hiệu đầu ra của mô hình mẫu ym và tín hiệu đầu ra của mạng nơ ron nhận
dạng ymh, bộ điều khiển thực hiện các luật học thích nghi tạo ra tín hiệu điều khiển u
với mục đích tạo ra được tín hiệu đầu ra của mạng nhận dạng bám theo được tín
hiệu đầu ra của mô hình. Với e2 = ym – ymh và ė2 là đạo hàm cấp một của sai lệch e2
Với thời gian nghiên cứu có hạn, luận văn này chỉ đi sâu nghiên cứu ứng dụng
mạng nơ ron nhiều lớp truyền thẳng nhận dạng vị trí rô bốt hai khâu.
b/ Phạm vi nghiên cứu của đề tài.
- ymh
-
e2
e1
y
ymh
ym
u
K
Bộ điều
khiển
Mô hình mẫu
Rôbốt hai khâu
Mạng nơron nhận
dạng
K
xd
e2
ė2
Hình 1. Sơ đồ khối điều khiển thích nghi rô bốt hai khâu