Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Nevanlinna five-value theorem for P-adic meromorphic functions and their derivatives
Nội dung xem thử
Mô tả chi tiết
Nguyễn Xuân Lai Tạp chí KHOA HỌC & CÔNG NGHỆ 81(05): 91 - 95
91
NEVANLINNA FIVE-VALUE THEOREM FOR P-ADIC
MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES
Nguyen Xuan Lai
Hai Duong College
ABSTRACT
In this paper, we gave a result similar to the Nevanlinna five-value theorem.
Keywords: Unique problem, p-adic Meromorphic functions, derivative, Nevanlinna, Height of
p-adic meromorphic functions
INTRODUCTION*
In 1920, Nevanlinna proved the following
result (the Navanlinna four- value theorem):
Theorem A. Let f and g be two non-constant
meromorphic functions. If f and g share four
distinct values CM, then f is a Mobius
transformation of g.
In 1997 Yang ang Hua [17] studied the
unicity problem for meromorphic functions
and differential monomials of the form
n
f f ′ , when they share only one value, and
obtained the following theorem.
Theorem B. Let f and g be two non- constant
meromorphic (resp. entire) functions, let n ≥
11 ( resp. n≥ 6) be an integer, and a Î £ , a
≠ 0. be a non- zero finite value. If n
f f ′ and
n
g g′ share the a CM, then either f ≡ dg for
some (n+ 1)- th root of unity d, or 1
cz f c e =
and 2
cz
g c e
−
= for three non-zero constants
1
c ,
2
c and c such that ( )
1 2 2
1 2
n
c c c a
+
= − .
In this paper, by using some arguments in
[10], [16] and the Nevanlinna theory in onedimensional non-archimedean case,
developed in [6], [12], [13], we gave a result
similar to the Nevanlinna five-value theorem.
*
Email: Nguyenxuanlai@yahoo.com
HEIGHT OF P-ADIC MEROMORPHIC
FUNCTIONS
Let f be a nonzero holomorphic function on
p
£ . For every a p
Î £ , expanding f as
( ) i
f P z a = − ∑ with homogeneous
polynomials Pi
of degree i around a, we
define
v a i P f i ( ) min : 0 = ≡ { / } .
For a point d p
Î £ , we define function
:
d
f p v → by
( ) ( ) d
f f d v a v a = −
Fix real number r with 0 r < £ r . Define
1 ( , )
( , )
ln
r
f
f
n a x
N a r dx
p x ρ
= ∫
If a = 0, then set ( ) (0, ) N r N r f f = .
For l a positive integer or + ¥ , set
,
,
1 ( , )
( , )
ln
r
l f
l f
n a x
N a r dx
p x ρ
= ∫
Where
l f f a ,
( , ) min ( ), { }
z r
n a r v z l
−
≤
= ∑ .
Let k be a positive integer or+ ¥ . Define
the function ( ) k
f
v z
≤
of p
£ into ¥ by
Số hóa bởi Trung tâm Học liệu - Đại học Thái Nguyên http://www.lrc-tnu.edu.vn