Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Lời Giải Singals and Systems
Nội dung xem thử
Mô tả chi tiết
1
CHAPTER 1
1.1 to 1.41 - part of text
1.42 (a) Periodic:
Fundamental period = 0.5s
(b) Nonperiodic
(c) Periodic
Fundamental period = 3s
(d) Periodic
Fundamental period = 2 samples
(e) Nonperiodic
(f) Periodic:
Fundamental period = 10 samples
(g) Nonperiodic
(h) Nonperiodic
(i) Periodic:
Fundamental period = 1 sample
l.43
(a) DC component =
(b) Sinusoidal component =
Amplitude =
y t( ) 3 200t π
6
+ -- cos 2
=
9 200t π
6
+ -- 2
= cos
9
2
-- 400t π
3
+ -- = cos 1
9
2
--
9
2
-- 400t π
3
+ -- cos
9
2
--
2
Fundamental frequency =
1.44 The RMS value of sinusoidal x(t) is . Hence, the average power of x(t) in a 1-ohm
resistor is = A2
/2.
1.45 Let N denote the fundamental period of x[N]. which is defined by
The average power of x[n] is therefore
1.46 The energy of the raised cosine pulse is
1.47 The signal x(t) is even; its total energy is therefore
200
π
--------Hz
A ⁄ 2
( ) A ⁄ 2 2
N 2π
Ω = ------
P 1
N
---- x
2
[ ] n
n=0
N-1
= ∑
1
N
---- A2 2πn
N
--------- + φ 2
cos
n=0
N-1
= ∑
A2
N
------ 2πn
N
--------- + φ 2
cos
n=0
N-1
= ∑
E 1
4
--( ) cos( ) ωt + 1 2
dt –π ω⁄
π ω⁄
∫ =
1
2
-- ( ) ωt + 2cos( ) ωt + 1 2 ( ) cos dt
0
π ω⁄
∫ =
1
2
-- 1
2
-- ( ) 2ωt 1
2 cos + + -- 2cos( ) ωt + 1 dt
0
π ω⁄
∫ =
1
2
-- 3
2
-- π
ω
--- = = 3π ⁄ 4ω
E 2 x
2
( )t dt
0
5
∫ =
3
1.48 (a) The differentiator output is
(b) The energy of y(t) is
1.49 The output of the integrator is
for
Hence the energy of y(t) is
1.50 (a)
2 1( )2 t 2 5( ) – t 2
dt
4
5
∫ d +
0
4
∫ =
2[ ]t t=0
4 2 1
3
--( ) 5 – t 3 – t=4
5
= +
8 2
3
+ -- 26
3 = = -----
y t( )
1 for 5– < <t –4
– for 4 1 < <t 5
0 otherwise
=
E ( ) 1 2 t ( ) –1 2
dt
4
5
∫ d + –5
–4
∫ =
= = 1 1 + 2
y t( ) A τ τd
0
t
∫ == 0 At ≤ ≤t T
E A2
t
2
dt
0
T
∫ A2
T3
3 = = ------------
-1 -0.8 0 0.8 1 t
x(5t)
1.0
-25 -20 0 20 25 t
x(0.2t)
1.0
(b)
4
1.51
1.52 (a)
0 0.1 0.5 0.9 1.0
x(10t - 5)
1.0
t
x(t)
1
-1 1 2 3
t
-1
y(t - 1)
t -1 1 2 3
-1
x(t)y(t - 1)
t
1
1
2 3
-1
-1
5
1.52 (b)
1.52 (c)
x(t - 1)
1
t
t
1
y(-t)
t
-1 1 2 3 4
-1
-2 -1 1 2 3 4
1
-1
x(t - 1)y(-t)
-2 -1 1 2 3 4
-1
-2
-1 1 2 3
-1
1 2 3 4
t
t
-2 -1
x(t + 1)y(t - 2)
t -2 -1 1 2 3 4
x(t + 1)
1
y(-t)
6
1.52 (d)
1.52 (e)
x(t)
t
t
1
y(1/2t + 1)
t
x(t - 1)y(-t)
-1
-3 -2 -1 1 2 3
-1
1
1 2 4 6
-1.0
-3 -2 -1 1 2 3
6 -5 -4 -3 -2 -1
1 2 3
-4 -3 -2 -1
1
-1
x(t)
t
-4 -3 -2 -1
1 2 3
t
y(2 - t)
t
1 2 3
-1
-1
x(t)y(2 - t)
7
1.52 (f)
1.52 (g)
-2 -1 1 2
t
1
-1
x(t)
x(2t)y(1/2t + 1)
+1
-1
-0.5
-1
t
1 2
1 1 2 3
t
-1.0
y(t/2 + 1)
-3 -2 -1
1.0
-5
-6
-7 -6 -5 -4 -3 -2
1
-1
x(4 - t)
y(t)
-2 -1 1 2 4
t
t
-3 -2 -1 1 2 3
t
x(4 - t)y(t) = 0
8
1.53 We may represent x(t) as the superposition of 4 rectangular pulses as follows:
To generate g1(t) from the prescribed g(t), we let
where a and b are to be determined. The width of pulse g(t) is 2, whereas the width of
pulse g1(t) is 4. We therefore need to expand g(t) by a factor of 2, which, in turn, requires
that we choose
The mid-point of g(t) is at t = 0, whereas the mid-point of g1(t) is at t = 2. Hence, we must
choose b to satisfy the condition
or
Hence,
Proceeding in a similar manner, we find that
Accordingly, we may express the staircase signal x(t) in terms of the rectangular pulse g(t)
as follows:
1
1 2 3 4
t
g1(t)
1
11 2 3 4
t
g2(t)
1
1 2 3 4
t
g3(t)
1
1 2 3 4
t
g4(t)
0
g1( )t = g at b ( ) –
a
1
2 = --
a( ) 2 – 0 b =
b 2a 2 1
2
-- == = 1
g1( )t g
1
2
--t – 1 =
g2( )t g
2
3
--t 5
3 – -- =
g3( )t = g t( ) – 3
g4( )t = g( ) 2t – 7
9
1.54 (a)
(b)
(c)
(d)
(e)
x t( ) g
1
2
--t – 1 g
2
3
--t 5
3 – -- = + ++ g t( ) – 3 g( ) 2t – 7
0 1 2
t
x(t) = u(t) - u(t - 2)
0 1 2
-1 3
-2
-1
t
x(t) = u(t + 1) - 2u(t) + u(t - 1)
t
x(t) = -u(t + 3) + 2u(t +1) -2u(t - 1) + u(t - 3)
-3 1 2 3
-1
0
t
x(t) = r(t + 1) - r(t) + r(t - 2)
-2 -1 0 1 2 3
1
t
x(t) = r(t + 2) - r(t + 1) - r(t - 1)+ r(t - 2)
1
-3 -2 -1 0 1 2
10
1.55 We may generate x(t) as the superposition of 3 rectangular pulses as follows:
All three pulses, g1(t), g2(t), and g3(t), are symmetrically positioned around the origin:
1. g1(t) is exactly the same as g(t).
2. g2(t) is an expanded version of g(t) by a factor of 3.
3. g3(t) is an expanded version of g(t) by a factor of 4.
Hence, it follows that
That is,
1.56 (a)
(b)
-4 -2 0 2 4
1
g1(t)
t
-4 -2 0 2 4
1
g2(t)
t
-4 - 2 0 2 4
1
g3(t)
t
g1( )t = g t( )
g2( )t g
1
3
--t =
g3( )t g
1
4
--t =
x t( ) g t( ) g
1
3
--t g
1
4
--t = + +
o o 2
-1 0 1
n
x[2n]
o
o
o
-1 0 1
o n
2
1
x[3n - 1]
11
1.56 (c)
(d)
(e)
(f)
o
o o o o
o o o o
o
n -4 -3 -2 -1 0
1
1
2 3 4 5
-1
y[1 - n]
o
o o o
o o o o
o
n
-3 -2 -1
1
1
2 3 4 5
-1
y[2 - 2n]
o o o o o
o
o
o
o
o
o
o
o o o
o
4
3
2
1
-7 -6 -5 -4 -3
-2 -1 0 1 2 3 4 5 6 7 8
n
x[n - 2] + y[n + 2]
o o o o
o o
o o o
o
o o o
-5 -4 -3 -2 2 3
-1 4 5 6 7
1
-1
n
x[2n] + y[n - 4]
12
1.56 (g)
(h)
(i)
(j)
o o n
o
o
o
o
o
o
o
o -5 -4 -3 -2 -1 1
1
2
3
x[n + 2]y[n - 2]
o o o
o
o
o o
o
o
o
3
2
1
-3 -2 -1 1 2 3 4 5 6 7 8
n
x[3 - n]y[-n]
o
o
o
o
o o
o
o
o o o
o
-5 -4 -3 -2 -1
3
2
1
-1
-2
-3
1 2 3 4 5 6
n
x[-n] y[-n]
o o o
o
o
o o
o
o
o o o
3
2
1
-1
-2
-3
-6 -5 -4 -3
-2 -1 1 2 3 4 5 6
n
x[n]y[-2-n]
o
13
1.56 (k)
1.57 (a) Periodic
Fundamental period = 15 samples
(b) Periodic
Fundamental period = 30 samples
(c) Nonperiodic
(d) Periodic
Fundamental period = 2 samples
(e) Nonperiodic
(f) Nonperiodic
(g) Periodic
Fundamental period = 2π seconds
(h) Nonperiodic
(i) Periodic
Fundamental period = 15 samples
1.58 The fundamental period of the sinusoidal signal x[n] is N = 10. Hence the angular
frequency of x[n] is
m: integer
The smallest value of is attained with m = 1. Hence,
radians/cycle
o o o o o
o
o
o
o
o
o
o o o
3
2
1
-1
-2
-3
1 2 3 4 5 6
-8 -7 -6 -5 -4 -3
-2 -1
x[n + 2]y[6-n]
n
Ω 2πm
N = ----------
Ω
Ω 2π
10------ π
5 = = --
14
1.59 The amplitude of complex signal x(t) is defined by
1.60 Real part of x(t) is
Imaginary part of x(t) is
1.61 We are given
The waveform of x(t) is as follows
xR
2
( )t xI
2 + ( )t A2 ( ) ωt + φ A2 ( ) ωt + φ 2 + sin
2 = cos
A () ω ωt + φ ( ) t + φ 2 + sin
2 = cos
= A
Re{ } x t( ) Aeαt = cos( ) ωt
Im{ } x t( ) Aeαt = sin( ) ωt
x t( )
t
∆
--- for ∆
2
--- t
∆
2 – ≤ ≤ ---
1 for t
∆
2 ≥ ---
2 for t ∆
2 < –---
=
x(t)
1
1
2
1
2
-∆/2
∆/2
t
-
0
15
The output of a differentiator in response to x(t) has the corresponding waveform:
y(t) consists of the following components:
1. Rectangular pulse of duration ∆ and amplitude 1/∆ centred on the origin; the area
under this pulse is unity.
2. An impulse of strength 1/2 at t = ∆/2.
3. An impulse of strength -1/2 at t = -∆/2.
As the duration ∆ is permitted to approach zero, the impulses (1/2)δ(t-∆/2) and
-(1/2)δ(t+∆/2) coincide and therefore cancel each other. At the same time, the rectangular
pulse of unit area (i.e., component 1) approaches a unit impulse at t = 0. We may thus state
that in the limit:
1.62 We are given a triangular pulse of total duration ∆ and unit area, which is symmetrical
about the origin:
-∆/2 ∆/2
1/∆
y(t)
1
2 δ(t - ) 1
2
1
2 δ(t + ) ∆
2
t 0
y t( )
∆ → 0
lim
∆ → 0
lim d
dt = ---- x t( )
= δ( )t
x(t)
2/∆
slope = -4/∆2
area = 1
slope = 4/∆2
-∆/2 0 ∆/2
t