Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Giáo trình giải tích cơ sở
Nội dung xem thử
Mô tả chi tiết
GIẢI TÍCH (CƠ SỞ)
Phần 3. Độ Đo Và Tích Phân
§3. TÍCH PHÂN THEO LEBESGUE
Chuyên ngành: Giải Tích, PPDH Toán
(Phiên bản đã chỉnh sửa)
PGS TS Nguyễn Bích Huy
Ngày 1 tháng 3 năm 2006
1 PHẦN LÝ THUYẾT
1. Điều kiện khả tích theo Riemann
Nếu hàm f khả tích trên [a, b] theo nghĩa tích phân xác định thì ta cũng nói f khả tích
theo Riemann hay (R)−khả tích.
Định lý 1
Hàm f khả tích Riemann trên [a, b] khi và chỉ khi nó thỏa mãn hai điiều kiện sau :
i. f bị chặn.
ii. Tập các điểm gián đoạn của f trên [a, b] có độ đo Lebesgue bằng 0.
2. Định nghĩa tích phân theo Lebesgue
Cho không gian độ đo (X, F, µ) và A ∈ F, f : A −→ R là hàm đo được
(a) Nếu f là hàm đơn giản, không âm trên A và f =
Pn
i=n
ai
.1Ai với Ai ∈ F, Ai ∩ Aj =
ø (i 6= j) và Sn
i=1
Ai = A thì ta định nghĩa tích phân của f trên A theo độ đo µ bởi :
Z
A
f dµ := Xn
i=n
aiµ(Ai)
(b) Nếu f là hàm đo được, không âm thì tồn tại dãy các hàm đơn giản, không âm fn
sao cho
fn(x) ≤ fn+1(x), limn→∞
fn(x) = f(x) ∀x ∈ A
Khi đó ta định nghĩa
Z
A
f dµ = limn→∞ Z
A
fndµ
Chú ý rằng, tích phân hàm đo được không âm luôn tồn tại, là số không âm và có
thể bằng +∞
1