Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Fundamentals of continuum mechanics
Nội dung xem thử
Mô tả chi tiết
CONTINUUM
MECHANICS
WITH APPLICATIONS TO MECHANICAL,
THERMOMECHANICAL, AND SMART MATERIALS
T h e r m o - M e c h a n ic a l E f f e c t s
MECHANICAL
STEPHEN E. BECHTEL
with
ROBERT L, LOWE
Fundamentals of
Continuum Mechanics
Fundamentals of
Continuum Mechanics
With Applications
to Mechanical,
"hermomechanical,
and Smart Materials
Stephen E. Bechtel
Robert L Lowe
ELSEVIER
a m st i:r i)a m • b o s t o n • • Lo n d o n
Nl-.W YORK • OXPORO • PARIS • SAN DlECiO
SAN FRANCISCO • SINGAPORK • SYDNRY • lOKYO
I’tcM IS jn uiipiiiii ul Hvcnci
Acadcmic Press is an imprint o f Elsevier
5 2 5 B Strecl. Suite 18(K). San Diego. CA 92101-4495. USA
225 Wyman Strecl. Waltham. MA 02451. USA
The Boulevard. Langford Lane, Kidlington. Oxford 0X 5 IGB. UK
Copyright O 2015 Elsevier Inc. All rights reserved.
No pan of this publication may be reprtxJuced or transmitted in any form or by any means,
electronic or mechanical, including phottKopying. recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publishers permissions policies and our arrangements
with organizations such as the Copyright Clearance Center and the Copyright Licensing Agcncy.
can be found at our website; www.elsevier.com/permissions.
This b(x>k and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).
Notices
Knowledge and best practice in this (ield are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information. meth{xls, compounds, or experiments described herein. In
using such information or methods they should be mindful of their own safely and the safety of
others, including parties for whom they have a professional respt)nsibility.
To the fullest extent of the law. neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter o f products
liability, negligence or otherwise, or from any use or operation of any methtxls. products,
instructions, or ideas contained in the material herein.
I.ibrdry of Congress Catal ¡cation Data
A catalog record for this b(X )k is available from the Library of Congress
British Library (.'ataloguing-in-Publication Data
A catalogue record for this Ixxik is available from the British Library
For information on all Academic Press publications
visit t)ur web site at store.el.sevier.com
Printed and bound in the United Slates
14 15 16 17 10 9 8 7 6 5 4 .1 2 1
LSBN; 978-0-12-.^946(X) 3
Working together
to grow libraries in
SSS«ÍÍ3 developing countries
www.elsevicr.com • «'ww.book.iiJ.t
7/(/,v hook i.s dedwcited to my wife Barhura and m v fa lh er Robert.
Contents
Prelace ......................................................................................................................................xiii
P A R T I THE B EG INN ING______________________________________
CHAPTER 1 What Is a Continuum? 3
CHAPTER 2 Our Mathematical Playground............................................... 5
2.1 Real numbers and Euclidean spacc............................................................5
2.1.1 Properties of real num bers...........................................................5
2 .1.2 Properties ol’ Euclidean space......................................................7
2.2 Tensor alg ebra...............................................................................................12
2.2.1 Second-order tensors, zero tensor, identity te n so r.............. 12
2.2.2 Product, transpose, .symmetry.................................................... 16
2.2..'^ Dyadic product .............................................................................22
2.2.4 Cartesian components, indicial notation, summation
convention .................................................................................... 24
2.2.5 Trace, scalar product, delerm inani...........................................35
2.2.6 Inverse, orthogonality, positive definiteness...........................39
2.2.7 Vector product, scalar triple product....................................... 42
2.3 Eigenvalues, eigenvectors, polar decom position, invariants ........ 44
2.4 Ten.sors of order three and fo u r................................................................47
2.5 Tensor c alcu lu s............................................................................................ 48
2.5.1 Partial derivatives.........................................................................48
2.5.2 Chain rule, gradient, divergence, curl.
divergence theorem .....................................................................52
2.5.3 Tensor calculus in Cartesian component fo rm .................... 56
2.6 Curvilinear coordinates.............................................................................59
2.6.1 Covariant and contravariant basis v ecto rs.............................60
2.6.2 Physical com ponents...................................................................63
2.6.3 Spatial derivatives: Covariant differentiation........................65
PART II K IN E M A TIC S , K IN ETICS, AND THE
FUNDAM ENTAL LAWS OF M E C H A N IC S AND
TH E R M O D Y N A M IC S __________________________________
CHAPTER 3 Kinematics: Motion and Deformation 75
3.1 Body, configuration, motion, displacem ent......................................... 75
3.2 Material derivative, velocity, acceleration ...........................................80
VII
viii Contents
3.3 Dcformalion and strain..........................................................................
3.3.1 Deformalion gradieni................................................................H5
3.3.2 Stretch, rotation. Green's deformalion tensor,
Cauchy deformalion te n so r.................................................... KS
3.3.3 Polar decomposition, stretch tensors, rotation tensor ....91
3.3.4 Principal stretches and principal directions........................ 94
3.3.5 Other measures of deformation and strain ..........................96
3.4 VekKity gradient, rate of deformation tensor, vorticity tensor .. I()4
3.5 Material point, material line, material surface.
material volum e.................................................................................. 109
3.6 Volume elements and surface elements in volume
and surface integrations..................................................................... 110
CHAPTER 4 The Fundamental Laws of Thermomechanics ii5
4.1 Mass ...................................................................................................... 1 15
4.2 Forces and moments, linear and angular momentum.................. 116
4.3 Equations of motion (mechanical conservation law s)................. 117
4 .4 The first law of thermodynamics (conservation of en erg y )....... 118
4.5 The transport and localization theorem s....................................... 120
4.5.1 The transport theorem ........................................................ 120
4.5.2 The k>eali/.ation theorem ................................................... 122
4.6 Cauchy stress tensor, heat Hux vector............................................ 124
4.7 The energy theorem and stress pow er............................................ 1.30
4.8 Local forms of the conservation la w s............................................ 131
4.9 Lagrangian forms of the integral conservation law s.................... 137
4.9.1 Mass, forces, moments, linear and angular
m om entum ............................................................................ 139
4.9.2 Conservation of mass, linear momentum, and
angular m om entum ............................................................. 140
4.9.3 First law of thermodynamics............................................ 141
4.9.4 Sum m ary............................................................................... 141
4 .1 0 Piola-Kirchhoff stress tensors, referential heal llux vector........ 142
4.10.1 Relations between spatial and referential quantities ... 142
4.11 The Lagrangian form of the energy theorem................................. 143
4.12 Lcxral conservation laws in Lagrangian fo rm ............................... 144
4.1 3 The second law of thermodynamics................................................ 148
PART ill CONSTITUTIVE MODELING_________________________
CHAPTER 5 Constitutive Modeling in Mechanics and
Thermomechanics..............................................................I57
Part I: M echanics.............................................................................................................. IS'?
5.1 Fundamcnial laws, conslilulive equations, a well-posed
inilial-value boundary-value prohleni............................................. 157
Contents
5.2 Rcslriclions on the constitutive cqualions....................................... 159
5.2.1 invariance under superposed rigid body m otion s......... 160
5.2.2 Material symmetry ............................................................... 171
Part 11: Therm omechanics................................................................................................ 174
5.3 Fundamental laws, conslilulive equations, thermomechanical
processes................................................................................................. 175
5.4 Restrictions on the conslitutive cqualions...................................... 178
5.4.1 Invariance under superposed rigid body m o tio n s.......... 178
CHAPTER 6 N o n lin e a r E l a s t i c i t y ................................................................... i8 i
6.1 Mechanical theory............................................................................... 181
6.2 Thermomechanical th eory ................................................................ 18.3
6 .2 .1 Restrictions imposed by ihe second law
of therm odynam ics.............................................................. 183
6.2.2 Restrictions imposed by invariance under
superposed rigid body motions and conservation
of angular m om entum ......................................................... 187
6.2.3 Resirictions imposed by malerial symmetry:
Isolropy .................................................................................. 191
6.3 Strain energy m odels.......................................................................... 194
CHAPTER 7 Fluid M e c h a n ic s ........................................................................... IM7
7.1 Mechanical theory............................................................................... 197
7.1.1 Viscous fluids......................................................................... 197
7.1.2 Invlscid fluids......................................................................... 205
7.2 Thermomechanical th eory ................................................................206
7.2.1 Viscous fluids......................................................................... 206
7.2.2 Invlscid fluids..........................................................................212
CHAPTER 8 In c o m p re s sib ility a n d T h e rm al E x p a n s io n ................... 215
8.1 Introduction........................................................................................... 215
8.1.1 Motion-temperature constraints.......................................... 216
8.1.2 Motion-entropy conslralnts.................................................217
8.2 Newtonian flu id s.................................................................................218
8.2.1 The compressible theory: A briel'review .........................218
8.2.2 Incompressiblllty...................................................................220
8.2.3 Incompresslbility as a constitutive limit: An
alternative perspective.........................................................227
8.2.4 Thermal expansion............................................................... 229
8.2.5 Thermal expansion as a constitutive limit: An
alternative perspective......................................................... 234
Contents
8.3 Nonlinear elaslic so lid s...................................................................... 236
8.3.1 The compressible theory: A brief review........................ 236
8.3.2 Incom pressibility.................................................................. 237
8.3.3 Incompressible strain energy m odels............................... 241
PART IV BEYOND M ECHANICS AND
THERIVIOMECHANICS
CHAPTER 9 Modeling of Thermo-Electro-MagnetoMechanical Behavior, with Application to Smart
M aterials............................................................................ 249
9.1 The fundamental laws of continuum electrodynamics;
Integral forms....................................................................................... 250
9.1.1 Notation and nomenclature ............................................... 250
9.1.2 Conservation of m ass...........................................................251
9.1.3 Balance of linear momentum ............................................ 252
9.1.4 Balance of angular m om entum .........................................256
9 .1.5 First law of thermodynamics............................................. 257
9.1.6 Second law of ihermodynamics......................................... 259
9.1.7 Conservation of electric charge........................................ 260
9.1.8 Faraday’s la w .........................T............................................262
9 .1.9 Gauss's law for magnetism................................................. 262
9.1.10 Gauss’s law for electricity................................................... 263
9.1.11 Ampere-Maxwell la w ......................................................... 264
9.1.12 Transformations between spatial and referential
TEMM quanlilies................................................................ 265
9.2 The fundamental laws of continuum electrodynamics:
Pointwise form s.................................................................................. 269
9.2.1 Eulerian fundamcnial law s....................................................269
9.2.2 Lagrangian fundamental laws...............................................275
9.3 Modeling of the effective electromagnetic fields............................277
9.3.1 Minkowski model ................................................................. 278
9.3.2 Lorenlz m txlel......................................................................... 278
9.3.3 Statistical m ixlel...................................................................... 278
9.3.4 Chu mcxiel ................................................................................279
9.3.5 A comparison of the four m odels........................................ 279
9.4 Modeling of the eleclromagneiically induced coupling
term s...................................................................................................... 280
9.4.1 An alternative approach......................................................... 281
9.5 Thermo-eleciro-magnelo-mechanical process.............................. 283
Contents
9.6 Conslitutive model developmenl lor
ihermo-eleetro-magneto-elastic materials:
Large-deformation theory.................................................................. 2X4
9.6.1 The reduced Clausius-Duhem inequality, work
conjugates............................................................................. 284
9.6.2 The all-extensive formulation........................................... 285
9.6.3 Otfier form ulations.............................................................. 288
9.6.4 Restrictions imposed by invariance under
superposed rigid body motions and conservation
of angular m om entum ........................................................293
9.7 Conslilulive model development for
ihemio-eleciro-magneto-elastic materials:
Small-def'ormation theory.................................................................. 294
9.7.1 Small-delomialion kinematics, kmetics.
electromagnelic fields, and fundamental laws.................294
9.7.2 Linear constitutive equations ............................................296
9.7.3 Material symmetry ..............................................................298
9.8 Linear, reversible, thermo-electro-magneio-mechanical
prtHJcsses................................................................................................299
9.9 Speciali/.ation of the small-deformation
ihermo-electro-magneio-elastic framework to piezoelectric
m aterials............................................................................................... 302
APPENDIX A Different Notions of Invariance .105
APPENDIX B The Physical Basis of Constitutive Assumptions 307
APPENDIX C Isotropic Tensors 309
APPENDIX D A Family of Thermomechanical Processes 3 1 1
APPENDIX E Energy Formulations and Stability Conditions for
Newtonian Fluids 3i3
E.1 Governing cqualions................................................................ 313
E.I.l Densily-entropy I'ormulalion......................................... 314
E. 1.2 Density-iemperature form ulation......................................315
E. 1.3 Pressure-eniropy formulation .............................................315
E. 1.4 Pressure-temperaiure formulation......................................316
E.2 Stability conditions .......................................................................... 317
APPENDIX F Additional Energy Formulations for
Thermo-Electro-Magneto-Mechanical M aterials 3i9
F.l Déformaiion-lemperature-electric displacement-magnetic
induction form ulation....................................................................... 319
Bibliography.......................................................................................................................321
In d e x .................................................................................................................................... 325
Preface
CONTINUUM MECHANICS: THE NEW PEDAGOGY
Since my days as a graduate student at iJerkeley In the early 1980s. the graduate
engineering mechanics curriculum has undergone Ihree major changes: l-irst. in
previous years, the curriculum left time lor courses in linear eiaslicily. linite elasticity. plasticity, viscoelasticity. Inviscid Huid dynamics, and viscous Huid dynamics,
followed by a unifying course in continuum mechanics. Today, with the onslaught
of new materials and lechnological advances competing for space in the curriculum,
the reality Is that there Is no longer room for this many traditional mechanics courses.
Second, back In the day, much of the teaching and learning was accomplished through
homework exercises worked by the students on their own; graded and annotated by
the professor; and then returned to the students. Although the most effective, this
approach Is impractical given today's lime conslralnts on both the student and the
professor. As such, there is a risk that Important concepts may be overlooked If
they are not illuminated through worked examples. Third, mathematics and applied
mechanics have diverged, and this gap continues to widen. AsCourant and Hilbert j I )
mu.sed in their treatise Methods o f M athematical Physic.s. and is still the ca.se today:
"Since the seventeenth century, physical intuition has served us a vital source fo r
mathematical problems and methods. Recent trends and fashions have, however,
weakened the connecti<m between mathematics and physics: mathematicians,
turning away from the roots o f mathematics in intuition, have c<mcentrated on
refinement and emphasized the postulational side o f mathematics, and at times
have overlooked the unity o f their science with physics and other fields. In many
cases, physicists have ceased to appreciate the attitudes o f mathematicians. This
rift is unquestionably a serious threat to science as a whole: the broad stream of
scientific development may split into smaller and smaller rivulets and dry out"
This textbook adjusts to each of ihese realities: First, the material is covered in
the most time-efficient manner, that Is, by first giving the unified siluatli)n (continuum
mechanics), then applying It to special cases (iinite elasticity, viscous ffuid dynamics,
and so on). Because these special cases are presented in a single textbook, the
handoff between one subject and another is cleaner, and undue redundancy Is avoided.
Second, the majority of the problems In the textbook are presented as worked
examples with full, detailed solutions. Each of these problems Is designed to convey
an Important concept. Third, we place a strong emphasis on explicitly connecting
the mathematics to the continuum physics. Indicial notation Is jettisoned almost
entirely in favor of the more compact and elegant direct notation, allowing us to be
xiii