Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Essential Astrophysics
Nội dung xem thử
Mô tả chi tiết
Undergraduate Lecture Notes in Physics
Essential
Astrophysics
Kenneth R. Lang
Undergraduate Lecture Notes in Physics
Series Editors
Neil Ashby
William Brantley
Michael Fowler
Michael Inglis
Elena Sassi
Helmy S. Sherif
Heinz Klose
For further volumes:
http://www.springer.com/series/8917
Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering
topics throughout pure and applied physics. Each title in the series is suitable as a basis for
undergraduate instruction, typically containing practice problems, worked examples,
chapter summaries, and suggestions for further reading.
ULNP titles must provide at least one of the following:
• An exceptionally clear and concise treatment of a standard undergraduate
subject.
• A solid undergraduate-level introduction to a graduate, advanced, or non-standard subject.
• A novel perspective or an unusual approach to teaching a subject.
ULNP especially encourages new, original, and idiosyncratic approaches to
physics teaching at the undergraduate level.
The purpose of ULNP is to provide intriguing, absorbing books that will continue
to be the reader’s preferred reference throughout their academic career.
Kenneth R. Lang
Essential Astrophysics
123
Kenneth R. Lang
Department of Physics and Astronomy
Tufts University
Medford, MA
USA
ISSN 2192-4791 ISSN 2192-4805 (electronic)
ISBN 978-3-642-35962-0 ISBN 978-3-642-35963-7 (eBook)
DOI 10.1007/978-3-642-35963-7
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012955653
Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science?Business Media (www.springer.com)
Preface
Essential Astrophysics is a book to learn or teach from, as well as a fundamental
reference for anyone interested in astronomy and astrophysics. This unique volume
can be used as a textbook, teaching guide, or reference source for just about
anyone interested in astronomy and astrophysics.
It serves as a comprehensive, introductory text, which takes the student through
the field of astrophysics in lecture-sized chapters of basic physical principles
applied to the cosmos. Undergraduate students with an interest in the physical
sciences, such as astronomy, chemistry, engineering, or physics, will enjoy this
one-semester overview.
The text is of sufficient breadth and depth to prepare the interested student for
more advanced, specialized courses in the future. The clarity and comprehensive
nature of Essential Astrophysics make it a significant resource for the curious
reader that is unfamiliar with astrophysics or for professional astronomers who
may have forgotten the basics.
Astronomical examples are provided throughout the text, to reinforce the basic
concepts and physics, and to demonstrate the use of the relevant formulae. In this
way, the student learns to apply the fundamental equations and principles to
cosmic objects and situations. All of the example problems are solved with the
rough accuracy needed to portray the basic result. Such order-of-magnitude estimates are commonly used in astronomy and astrophysics, where large numbers are
involved, and an understanding of the underlying physics does not require engineering accuracy.
Essential Astrophysics is a serious introduction to astrophysics complete with
the necessary formulae. These equations sometimes include the calculus of integration, or adding up, and differentiation, that are found in the author’s classic
Astrophysical Formulae and more advanced textbooks. Nevertheless, the end
result in Essential Astrophysics is always a simple algebraic relationship that can
be applied to cosmic objects. These fundamental equations are given in the text
and collected at the end of the book in Appendix III, for future reference and use.
Therefore, only elementary algebra is required to solve any of the example
problems or other numerical conclusions in this book.
v
There are two types of intended readers. One type will be interested in broad,
general conclusions, without use of calculus. This reader will be content with the
existing text with no further elaboration. The more mathematically competent
reader will want to use Essential Astrophysics as a foundation for more advanced
considerations, with the guidance of the references, an instructor, or an advanced
textbook, using the formulae found in the text or within set aside Focus Elements
of Essential Astrophysics as a starting point.
The modern SI (International System) units are used in the equations and
example problems, which is another unique aspect of this book when compared to
most previous texts of astrophysics. A conversion table between the SI and c.g.s.
units is provided in the first chapter, to help the reader follow the details of many
papers and textbooks that use the older c.g.s. system. Astronomical and physical
constants, units, and fundamental equations are provided in appendices, for quick
reference.
Essential Astrophysics goes beyond the typical textbook by providing comprehensive access to astrophysical discoveries, concepts, and facts that are not
available in any other way. It gives us access to that long-forgotten formula, idea,
or reference, while also providing the material needed to introduce anyone to a
new area of astrophysics. Here, the reader can obtain the background required for a
general understanding and find guidance to the relevant literature including seminal discoveries, original research, and comprehensive up-to-date reviews that will
enable the curious reader to delve deeper into a particular topic. A more extensive
reference compilation of developments in astrophysics, from then to now, can be
found in Astrophysical Formulae.
We are the benefactors of 300 years of cumulative discovery in astronomy and
astrophysics, and Essential Astrophysics helps pass on these fundamental insights
to the next generation. It also reveals both the exciting moments of the past and
relatively recent discoveries. Historical aspects are illuminated through a progressive flow of chapter topics and by guidance to the earliest ideas, with reference
to the original sources as well as contemporary reviews. Perhaps because of the
rapid pace of modern research, contemporary texts often focus on specialized
topics and overlook these broader perspectives that Essential Astrophysics
provides.
There are 50 set-aside focus elements that enhance and amplify the discussion
with fascinating details. They include the intriguing development of particular
themes, which is missing in most astrophysics textbooks, or provide further
astrophysics or equations for use in examples, problems or further investigations.
In Essential Astrophysics we can rediscover basic physical concepts such as
space, time, radiation, mass, gravity, motion, heat, atoms, radioactivity, and cosmic rays, which are required to understand the observable universe. These fundamental topics are discussed in the first seven chapters, beginning with the
introductory chapter that describes how astronomers observe the contents of the
universe and how astrophysicists interpret them. The SI units of distance, mass,
time, energy, and luminosity are introduced, together with their astronomical units
vi Preface
such as the Ångström, light-year, parsec, and the Sun’s mass, luminosity, and
radius. The magnitude unit is also defined, but used sparingly in examples.
Chapter 2 describes radiation, of both the visible and invisible sort, which
carries messages from the cosmos and tells us much of what we know about it.
Chapter 3 discusses gravity, together with mass that helps determine its strength,
and related tidal phenomena and space curvature. Chapter 4 discusses cosmic
motion, and its balanced equilibrium with gravitation. Chapter 5 discusses the
motion of particles in a gas, together with the related concepts of speed distribution, heat, temperature, and pressure. The inside of the atom is explored in
Chap. 6, where the reader learns about atomic spectral lines and their use in
determining the composition of stars and the measurement of motions and magnetic fields. The transformation of elements in both radioactivity and by subatomic bombardment is presented in Chap. 7.
The fundamental concepts described in these first seven chapters provide a
necessary prelude to the rest of the book. It includes the discoveries that the
universe is predominantly hydrogen; that the stars shine by nuclear fusion; that the
stars live and die while new ones continue to be formed; that the interstellar spaces
are not empty but filled with dust, atoms, and molecules; and that the observable
universe is expanding and has a history. The last half of Essential Astrophysics
also includes relatively recent discoveries, such as pulsars, black holes, the threedegree cosmic microwave background, the formation of stars and galaxies,
invisible dark matter, and the dark energy that is now accelerating the expansion of
the universe.
Chapter 8 provides an account of the nuclear fusion reactions that make the Sun
shine. This is followed in Chap. 9 by modern discoveries of the Sun’s expanding
atmosphere, the solar winds, explosions on the Sun, the solar flares and coronal
mass ejections, and their space–weather threats to spacecraft and humans in space.
Chapter 10 presents an overview of the stars, telling us how far away, bright,
luminous, hot, big, and massive they are. It also includes discussions of stellar
spectra, as well as the evolution of stars and their role in the origin of the chemical
elements.
The space between the stars is discussed in Chap. 11, beginning with bright
stars that illuminate nearby space and continuing with the dust, gas, radio emission, and molecules within interstellar space. This is naturally followed in
Chap. 12 by the ongoing formation of stars and their planets; recent discoveries of
protoplanetary disks and planets around nearby stars can also be found in this
chapter.
The final destiny of stars, when they have depleted their nuclear resources, is
presented in Chap. 13. It includes planetary nebulae, white dwarf stars, degenerate
pressure, novae, supernovae, neutron stars, pulsars, and stellar black holes.
Our last two chapters discuss the observable universe in its entirety, including
the Milky Way, the receding galaxies, the big bang with its background radiation,
the first atoms, stars, and galaxies, the evolution of galaxies, dark matter and dark
energy, and the ultimate destiny of the universe.
Preface vii
A total of 69 tables provide vital facts and physical information for the main
types of cosmic objects; students, teachers, and researchers may also consult this
information throughout their careers. In alphabetical order, they include the
physical properties of atmospheres, clusters of galaxies, the cosmic microwave
background radiation, the Earth, emission nebulae, galaxies, our Galaxy, giant
molecular clouds, H I regions, H II regions, interstellar molecules, the Milky Way,
our Moon, neutron stars, novae, planetary nebulae, planets, pulsars, radioactive
isotopes, the Sun, stars, star clusters, supernova explosions, and supernova
remnants.
Our tables also include information about cosmic magnetic fields, cosmic rays,
cosmological parameters, and nuclear fusion processes, as well as the range of
cosmic pressures, cosmic temperatures and stellar luminosity, and the spectral
lines of active galaxies, emission nebulae, stars, the Sun’s corona, and the Sun’s
photosphere.
There are also excellent line drawings, prepared by Kacha Bradonjich, and
several images of astronomical objects from the ground and space that help cement
our newfound knowledge together. They help crystallize a new concept with a
visual excitement that adds another dimension to our understanding.
The author also writes another sort of popular book, filled with personal
anecdotes, the lives of contributors to the field, and human metaphors, without an
equation or reference in sight. For this complementary approach, the reader is
referred to the author’s two books The Life and Death of Stars and Parting the
Cosmic Veil, which deal with many of the same general topics as Essential
Astrophysics in a different, lighter perspective.
I am indebted to Gayle Grant for help in assembling this book, and to the Tufts
Faculty Research Committee for modest support for typing some equations in it.
And last, but not least, the author thanks Ramon Khanna for his skillful editorial
suggestions that have made Essential Astrophysics a better book.
Medford, November 2012 Kenneth R. Lang
viii Preface
Contents
1 Observing the Universe................................ 1
1.1 What Do Astronomers and Astrophysicists Do? . . . . . . . . . . . 1
1.2 Our Place on Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Location in the Sky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Measuring Angle and Size. . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 The Locations of the Stars are Slowly Changing . . . . . . . . . . 10
1.6 What Time is It? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Telling Time by the Stars . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Optical Telescopes Observe Visible Light . . . . . . . . . . . . . . . 19
1.9 Telescopes that Detect Invisible Radiation. . . . . . . . . . . . . . . 23
1.10 Units Used by Astronomers and Astrophysicists. . . . . . . . . . . 27
1.11 Physical Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 The Electromagnetic Spectrum. . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Moving Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Thermal (Blackbody) Radiation . . . . . . . . . . . . . . . . . . . . . . 44
2.5 How Far Away is the Sun, and How Bright,
Big and Hot is it?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.1 Distance of the Sun . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.2 How Big is the Sun?. . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.3 The Unit of Energy. . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.4 The Sun’s Luminosity. . . . . . . . . . . . . . . . . . . . . . . 55
2.5.5 Taking the Sun’s Temperature . . . . . . . . . . . . . . . . . 55
2.5.6 How Hot are the Planets? . . . . . . . . . . . . . . . . . . . . 56
2.6 The Energy of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7 Radiation Scattering and Transfer. . . . . . . . . . . . . . . . . . . . . 61
2.7.1 Why is the Sky Blue and the Sunsets Red? . . . . . . . . 61
2.7.2 Rayleigh Scattering. . . . . . . . . . . . . . . . . . . . . . . . . 62
ix
2.7.3 Thomson and Compton Scattering . . . . . . . . . . . . . . 63
2.7.4 Radiation Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1 Ceaseless, Repetitive Paths Across the Sky . . . . . . . . . . . . . . 69
3.2 Universal Gravitational Attraction . . . . . . . . . . . . . . . . . . . . 73
3.3 Mass of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4 Tidal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.1 The Ocean Tides . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2 Tidal Locking into Synchronous Rotation . . . . . . . . . 85
3.4.3 The Days are Getting Longer. . . . . . . . . . . . . . . . . . 85
3.4.4 The Moon is Moving Away from the Earth . . . . . . . . 87
3.4.5 A Planet’s Differential Gravitational Attraction
Accounts for Planetary Rings. . . . . . . . . . . . . . . . . . 90
3.5 What Causes Gravity?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4 Cosmic Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1 Motion Opposes Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.1 Everything Moves . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.1.2 Escape Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Orbital Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 The Moving Stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.1 Are the Stars Moving? . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Components of Stellar Velocity . . . . . . . . . . . . . . . . 105
4.3.3 Proper Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.4 Radial Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.5 Observed Proper Motions of Stars . . . . . . . . . . . . . . 109
4.3.6 Motions in Star Clusters . . . . . . . . . . . . . . . . . . . . . 111
4.3.7 Runaway Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4 Cosmic Rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4.1 Unexpected Planetary Rotation. . . . . . . . . . . . . . . . . 116
4.4.2 The Sun’s Differential Rotation . . . . . . . . . . . . . . . . 120
4.4.3 Stellar Rotation and Age . . . . . . . . . . . . . . . . . . . . . 124
5 Moving Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 Elementary Constituents of Matter . . . . . . . . . . . . . . . . . . . . 125
5.2 Heat, Temperature, and Speed . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.1 Where Does Heat Come From? . . . . . . . . . . . . . . . . 130
5.2.2 Thermal Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.3 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.4 The Distribution of Speeds . . . . . . . . . . . . . . . . . . . 135
5.3 Molecules in Planetary Atmospheres. . . . . . . . . . . . . . . . . . . 138
x Contents
5.4 Gas Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.4.1 What Keeps Our Atmosphere Up? . . . . . . . . . . . . . . 141
5.4.2 The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4.3 The Earth’s Sun-Layered Atmosphere . . . . . . . . . . . . 144
5.4.4 Pressure, Temperature, and Density Inside the Sun. . . 148
5.5 Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5.1 Ionized Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.5.2 Plasma Oscillations and the Plasma Frequency . . . . . 152
5.5.3 Atoms are Torn Apart into Plasma Within the Sun. . . 153
5.6 Sound Waves and Magnetic Waves . . . . . . . . . . . . . . . . . . . 154
5.6.1 Sound Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.6.2 Magnetic Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6 Detecting Atoms in Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1 What is the Sun Made Out Of? . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Quantization of Atomic Systems . . . . . . . . . . . . . . . . . . . . . 165
6.3 Some Atoms are Excited Out of Their Lowest-Energy
Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.4 Ionization and Element Abundance in the Sun
and Other Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5 Wavelengths and Shapes of Spectral Lines . . . . . . . . . . . . . . 180
6.5.1 Radial Motion Produces a Wavelength Shift . . . . . . . 180
6.5.2 Gravitational Redshift . . . . . . . . . . . . . . . . . . . . . . . 181
6.5.3 Thermal Motion Broadens Spectral Lines . . . . . . . . . 183
6.5.4 Rotation or Expansion of the Radiating Source
can Broaden Spectral Lines . . . . . . . . . . . . . . . . . . . 184
6.5.5 Curve of Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.5.6 Magnetic Fields Split Spectral Lines. . . . . . . . . . . . . 186
7 Transmutation of the Elements . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1 The Electron, X-rays and Radium. . . . . . . . . . . . . . . . . . . . . 191
7.2 Radioactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3 Tunneling Out of the Atomic Nucleus. . . . . . . . . . . . . . . . . . 196
7.4 The Electron and the Neutrino . . . . . . . . . . . . . . . . . . . . . . . 199
7.5 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.6 Nuclear Transformation by Bombardment . . . . . . . . . . . . . . . 209
8 What Makes the Sun Shine? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.1 Can Gravitational Contraction Supply
the Sun’s Luminosity?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.2 How Hot is the Center of the Sun?. . . . . . . . . . . . . . . . . . . . 217
8.3 Nuclear Fusion Reactions in the Sun’s Core . . . . . . . . . . . . . 219
8.3.1 Mass Lost is Energy Gained . . . . . . . . . . . . . . . . . . 219
8.3.2 Understanding Thermonuclear Reactions . . . . . . . . . . 225
Contents xi
8.3.3 Hydrogen Burning . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.3.4 Why Doesn’t the Sun Blow Up? . . . . . . . . . . . . . . . 237
8.4 The Mystery of Solar Neutrinos . . . . . . . . . . . . . . . . . . . . . . 237
8.4.1 The Elusive Neutrino . . . . . . . . . . . . . . . . . . . . . . . 237
8.4.2 Solar Neutrino Detectors Buried
Deep Underground . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.4.3 Solving the Solar Neutrino Problem . . . . . . . . . . . . . 242
8.5 How the Energy Gets Out . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.6 The Faint-Young-Sun Paradox . . . . . . . . . . . . . . . . . . . . . . . 252
8.7 The Sun’s Destiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9 The Extended Solar Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.1 Hot, Volatile, Magnetized Gas . . . . . . . . . . . . . . . . . . . . . . . 255
9.1.1 The Million-Degree Solar Corona. . . . . . . . . . . . . . . 255
9.1.2 Varying Sunspots and Ever-Changing
Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
9.1.3 Coronal Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.1.4 What Heats the Corona? . . . . . . . . . . . . . . . . . . . . . 266
9.1.5 Coronal Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.2 The Sun’s Varying Winds . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.2.1 The Expanding Sun Envelops the Earth . . . . . . . . . . 268
9.2.2 Properties of the Solar Wind . . . . . . . . . . . . . . . . . . 271
9.2.3 Where Do the Two Solar Winds Come From? . . . . . . 274
9.2.4 Where Does the Solar Wind End? . . . . . . . . . . . . . . 275
9.3 Explosions on the Sun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.3.1 Solar Flares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.3.2 Coronal Mass Ejections. . . . . . . . . . . . . . . . . . . . . . 281
9.4 Space Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.4.1 Earth’s Protective Magnetosphere. . . . . . . . . . . . . . . 283
9.4.2 Trapped Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9.4.3 Earth’s Magnetic Storms . . . . . . . . . . . . . . . . . . . . . 288
9.4.4 Solar Explosions Threaten Humans
in Outer Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.4.5 Disrupting Communication . . . . . . . . . . . . . . . . . . . 290
9.4.6 Satellites in Danger . . . . . . . . . . . . . . . . . . . . . . . . 291
9.4.7 Forecasting Space Weather . . . . . . . . . . . . . . . . . . . 292
10 The Sun Amongst the Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.1 Comparisons of the Sun with Other Stars . . . . . . . . . . . . . . . 293
10.1.1 How Far Away are the Stars? . . . . . . . . . . . . . . . . . 293
10.1.2 How Bright are the Stars? . . . . . . . . . . . . . . . . . . . . 296
10.1.3 How Luminous are the Stars? . . . . . . . . . . . . . . . . . 298
10.1.4 The Temperatures of Stars. . . . . . . . . . . . . . . . . . . . 303
10.1.5 The Colors of Stars. . . . . . . . . . . . . . . . . . . . . . . . . 304
xii Contents
10.1.6 The Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . 305
10.1.7 Radius of the Stars . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.1.8 How Massive are the Stars?. . . . . . . . . . . . . . . . . . . 310
10.2 Main-Sequence and Giant Stars . . . . . . . . . . . . . . . . . . . . . . 318
10.2.1 The Hertzsprung–Russell Diagram . . . . . . . . . . . . . . 318
10.2.2 The Luminosity Class . . . . . . . . . . . . . . . . . . . . . . . 321
10.2.3 Life on the Main Sequence . . . . . . . . . . . . . . . . . . . 323
10.2.4 The Red Giants and Supergiants. . . . . . . . . . . . . . . . 326
10.3 Nuclear Reactions Inside Stars . . . . . . . . . . . . . . . . . . . . . . . 329
10.3.1 The Internal Constitution of Stars. . . . . . . . . . . . . . . 329
10.3.2 Two Ways to Burn Hydrogen
in Main-Sequence Stars. . . . . . . . . . . . . . . . . . . . . . 335
10.3.3 Helium Burning in Giant Stars. . . . . . . . . . . . . . . . . 340
10.4 Using Star Clusters to Watch How Stars Evolve . . . . . . . . . . 343
10.5 Where did the Chemical Elements Come From? . . . . . . . . . . 348
10.5.1 Advanced Nuclear Burning Stages
in Massive Supergiant Stars. . . . . . . . . . . . . . . . . . . 348
10.5.2 Origin of the Material World . . . . . . . . . . . . . . . . . . 349
10.5.3 The Observed Abundance of the Elements . . . . . . . . 350
10.5.4 Synthesis of the Elements Inside Stars . . . . . . . . . . . 351
10.5.5 Big-Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . 353
10.5.6 The First and Second Generation of Stars . . . . . . . . . 354
10.5.7 Cosmic Implications of the Origin of the Elements. . . 355
11 The Material Between the Stars . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.1 Gaseous Emission Nebulae . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.2 Solid Dust Particles in Interstellar Space . . . . . . . . . . . . . . . . 366
11.3 Radio Emission from the Milky Way . . . . . . . . . . . . . . . . . . 369
11.4 Interstellar Hydrogen Atoms . . . . . . . . . . . . . . . . . . . . . . . . 375
11.5 Interstellar Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
12 Formation of the Stars and Their Planets . . . . . . . . . . . . . . . . . . 381
12.1 How the Solar System Came into Being . . . . . . . . . . . . . . . . 381
12.1.1 The Nebular Hypothesis . . . . . . . . . . . . . . . . . . . . . 381
12.1.2 Composition of the Planets . . . . . . . . . . . . . . . . . . . 382
12.1.3 Mass and Angular Momentum
in the Solar System. . . . . . . . . . . . . . . . . . . . . . . . . 385
12.2 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
12.2.1 Giant Molecular Clouds . . . . . . . . . . . . . . . . . . . . . 388
12.2.2 Gravitational Collapse. . . . . . . . . . . . . . . . . . . . . . . 389
12.2.3 Triggering Gravitational Collapse . . . . . . . . . . . . . . . 392
12.2.4 Protostars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
12.2.5 Losing Mass and Spin. . . . . . . . . . . . . . . . . . . . . . . 398
Contents xiii
12.3 Planet-Forming Disks and Planets Around Nearby Stars . . . . . 400
12.3.1 The Plurality of Worlds. . . . . . . . . . . . . . . . . . . . . . 400
12.3.2 Proto-Planetary Disks . . . . . . . . . . . . . . . . . . . . . . . 400
12.3.3 The First Discoveries of Exoplanets . . . . . . . . . . . . . 403
12.3.4 Hundreds of New Worlds Circling Nearby Stars . . . . 408
12.3.5 Searching for Habitable Planets . . . . . . . . . . . . . . . . 409
13 Stellar End States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13.1 A Range of Destinies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13.2 Planetary Nebulae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.3 Stars the Size of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . 418
13.3.1 The Discovery of White Dwarf Stars . . . . . . . . . . . . 418
13.3.2 Unveiling White Dwarf Stars . . . . . . . . . . . . . . . . . . 419
13.3.3 The High Mass Density of White Dwarf Stars . . . . . . 420
13.4 The Degenerate Electron Gas. . . . . . . . . . . . . . . . . . . . . . . . 423
13.4.1 Nuclei Pull a White Dwarf Together
as Electrons Support It . . . . . . . . . . . . . . . . . . . . . . 423
13.4.2 Radius and Mass of a White Dwarf . . . . . . . . . . . . . 427
13.5 Exploding Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
13.5.1 Guest Stars, the Novae . . . . . . . . . . . . . . . . . . . . . . 429
13.5.2 What Makes a Nova Happen? . . . . . . . . . . . . . . . . . 430
13.5.3 A Rare and Violent End, the Supernovae . . . . . . . . . 433
13.5.4 Why do Supernova Explosions Occur? . . . . . . . . . . . 436
13.5.5 When a Nearby Star Detonates Its Companion. . . . . . 437
13.5.6 Stars that Blow Themselves Up . . . . . . . . . . . . . . . . 438
13.5.7 Light of a Billion Suns, SN 1987A. . . . . . . . . . . . . . 439
13.5.8 Will the Sun Explode? . . . . . . . . . . . . . . . . . . . . . . 443
13.6 Expanding Stellar Remnants . . . . . . . . . . . . . . . . . . . . . . . . 443
13.7 Neutron Stars and Pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . 450
13.7.1 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
13.7.2 Radio Pulsars from Isolated Neutron Stars. . . . . . . . . 453
13.7.3 X-ray Pulsars from Neutron Stars in Binary
Star Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
13.8 Stellar Black Holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
13.8.1 Imagining Black Holes . . . . . . . . . . . . . . . . . . . . . . 465
13.8.2 Observing Stellar Black Holes . . . . . . . . . . . . . . . . . 466
13.8.3 Describing Black Holes. . . . . . . . . . . . . . . . . . . . . . 467
14 A Larger, Expanding Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 471
14.1 The Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
14.1.1 A Fathomless Disk of Stars . . . . . . . . . . . . . . . . . . . 471
14.1.2 The Sun is Not at the Center of Our
Stellar System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
14.1.3 The Rotating Galactic Disk . . . . . . . . . . . . . . . . . . . 479
xiv Contents