Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Engineering Flow and Heat Exchange
Nội dung xem thử
Mô tả chi tiết
Engineering
Flow and
Heat Exchange
Octave Levenspiel
Third Edition
Engineering Flow and Heat Exchange
Octave Levenspiel
Engineering Flow
and Heat Exchange
Third Edition
Octave Levenspiel
Department of Chemical Engineering
Oregon State University
Corvallis, OR, USA
ISBN 978-1-4899-7453-2 ISBN 978-1-4899-7454-9 (eBook)
DOI 10.1007/978-1-4899-7454-9
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2014947869
© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface
This volume presents an overview of fluid flow and heat exchange.
In the broad sense, fluids are materials that are able to flow under the right
conditions. These include all sorts of things: pipeline gases, coal slurries, toothpaste, gases in high-vacuum systems, metallic gold, soups and paints, and, of
course, air and water. These materials are very different types of fluids, and so it
is important to know the different classifications of fluids, how each is to be
analyzed (and these methods can be quite different), and where a particular fluid
fits into this broad picture.
This book treats fluids in this broad sense, including flows in packed beds and
fluidized beds. Naturally, in so small a volume, we do not go deeply into the study of
any particular type of flow; however, we do show how to make a start with each. We
avoid supersonic flow and the complex subject of multiphase flow, where each of
the phases must be treated separately.
The approach here differs from most introductory books on fluids, which focus
on the Newtonian fluid and treat it thoroughly, to the exclusion of all else. I feel that
the student engineer or technologist preparing for the real world should be introduced to these other topics.
Introductory heat transfer books are devoted primarily to the study of the basic
rate phenomena of conduction, convection, and radiation, showing how to evaluate
“h,” “U,” and “k” for this and that geometry and situation. Again, this book’s
approach is different. We rapidly summarize the basic equations of heat transfer,
including the numerous correlations for h. Then we go straight to the problem of
how to get heat from here to there and from one stream to another.
The recuperator (or through-the-wall exchanger), the direct contact exchanger,
the heat-storing accumulator (or regenerator), and the exchanger, which uses a third
go-between stream—these are distinctly different ways of transferring heat from
one stream to another, and this is what we concentrate on. It is surprising how much
creativity may be needed to develop a good design for the transfer of heat from a
stream of hot solid particles to a stream of cold solid particles. The flavor of this
v
presentation of heat exchange is that of Kern’s unique book; certainly simpler, but
at the same time broader in approach.
Wrestling with problems is the key to learning, and each of the chapters has
illustrative examples and a number of practice problems. Teaching and learning
should be interesting, so I have included a wide variety of problems, some whimsical, others directly from industrial applications. Usually the information given in
these practice problems has been designed so as to fall on unique points on the
design charts, making it easy for the student and also for the instructor who is
checking the details of a student’s solution.
I think that this book will interest the practicing engineer or technologist who
wants a broad picture of the subject or, on having a particular problem to solve,
wants to know what approach to take.
In the university it could well form the basis for an undergraduate course
in engineering or applied fluids and heat transfer, after the principles have been
introduced in a basic engineering course such as transport phenomena. At present,
such a course is rarely taught; however, I feel it should be an integral part of
the curriculum, at least for the chemical engineer and the food technologist.
My thanks to Richard Turton, who coaxed our idiot computer into drawing
charts for this book, and to Eric Swenson, who so kindly consented to put his skilled
hand to the creation of drawing and sketch to enliven and complement the text.
Finally, many thanks to Bekki and Keith Levien, who without their help this new
revision would never have made it to print.
Corvallis, OR, USA Octave Levenspiel
vi Preface
Contents
Part I Flow of Fluids and Mixtures
1 Basic Equations for Flowing Streams ...................... 3
1.1 Total Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Mechanical Energy Balance . . . . . . . . . . . . . . . . . . . ....... 5
1.3 Pumping Energy and Power: Ideal Case . ................. 6
1.4 Pumping Energy and Power: Real Case Compression . . . ..... 7
1.4.1 Expansion . . ................................ 8
2 Flow of Incompressible Newtonian Fluids in Pipes . . . . . . . . . . . . 21
2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
References and Recommended Readings . . . . . . . . . . . . . . . . . . . . . 43
3 Compressible Flow of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Adiabatic Flow in a Pipe with Friction . . . . . . . . . . . . . . . . . . . 46
3.2 Isothermal Flow in a Pipe with Friction . . . . . . . . . . . . . . . . . . 49
3.3 Working Equations for Flow in Pipes (No Reservoir
or Tank Upstream) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Flow Through an Orifice or Nozzle . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Pipe Leading from a Storage Vessel . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4 Molecular Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Equations for Flow, Conductance, and Pumping Speed . . . . . . . 73
4.1.1 Notation ................................... 73
4.1.2 Laminar Flow in Pipes . ........................ 74
4.1.3 Molecular Flow in Pipes ........................ 75
4.1.4 Intermediate or Slip Flow Regime ................. 76
vii
4.1.5 Orifice, Contraction, or Entrance Effect in the Molecular
Flow Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.6 Contraction in the Laminar Flow Regime . . . . . . . . . . . 79
4.1.7 Critical Flow Through a Contraction . . . . . . . . . . . . . . . 79
4.1.8 Small Leak in a Vacuum System . . . . . . . . . . . . . . . . . 80
4.1.9 Elbows and Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.10 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Calculation Method for Piping Systems . . . . . . . . . . . . . . . . . . 82
4.3 Pumping Down a Vacuum System . . . . . . . . . . . . . . . . . . . . . . 84
4.4 More Complete Vacuum Systems . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
References and Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5 Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1 Classification of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.1 Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 Non-Newtonian Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Shear Stress and Viscosity of a Flowing Fluid . . . . . . . . . . . . . 102
5.3 Flow in Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Bingham Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.2 Power Law Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.3 General Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.4 Comments on Flow in Pipes . . . . . . . . . . . . . . . . . . . . . 110
5.4 Determining Flow Properties of Fluids . . . . . . . . . . . . . . . . . . . 111
5.4.1 Narrow Gap Viscometer . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Cylinder in an Infinite Medium . . . . . . . . . . . . . . . . . . . 112
5.4.3 Tube Viscometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5 Discussion on Non-Newtonians . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.1 Materials Having a Yield Stress,
Such as Bingham Plastics . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2 Power Law Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.5.3 Thoughts on the Classification of Materials . . . . . . . . . . 117
References and Related Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6 Flow Through Packed Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.1 Characterization of a Packed Bed . . . . . . . . . . . . . . . . . . . . . . 133
6.1.1 Sphericity ϕ of a Particle . . . . . . . . . . . . . . . . . . . . . . . 133
6.1.2 Particle Size, dp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.1.3 Determination of the Effective
Sphericity ϕeff from Experiment . . . . . . . . . . . . . . . . . . 137
6.1.4 Bed Voidage, ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Frictional Loss for Packed Beds . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Mechanical Energy Balance for Packed Beds . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
viii Contents
7 Flow in Fluidized Beds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.1 The Fluidized State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Frictional Loss and Pumping Requirement Needed
to Fluidize a Bed of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3 Minimum Fluidizing Velocity, umf . . . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8 Solid Particles Falling Through Fluids . . . . . . . . . . . . . . . . . . . . . 167
8.1 Drag Coefficient of Falling Particles . . . . . . . . . . . . . . . . . . . . 167
8.1.1 The Small Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1.2 Nonspherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.1.3 Terminal Velocity of Any Shape
of Irregular Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 169
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Part II Heat Exchange
9 The Three Mechanisms of Heat Transfer: Conduction,
Convection, and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.1 Heat Transfer by Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.1.1 Flat Plate, Constant k . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.1.2 Flat Plate, k ¼ k0 (1 + βT) . . . . . . . . . . . . . . . . . . . . . . . 181
9.1.3 Hollow Cylinders, Constant k . . . . . . . . . . . . . . . . . . . . 181
9.1.4 Hollow Sphere, Constant k . . . . . . . . . . . . . . . . . . . . . . 181
9.1.5 Series of Plane Walls . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.1.6 Concentric Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.1.7 Concentric Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.1.8 Other Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.1.9 Contact Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
9.2 Heat Transfer by Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2.1 Turbulent Flow in Pipes . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2.2 Turbulent Flow in Noncircular Conduits . . . . . . . . . . . . 185
9.2.3 Transition Regime in Flow in Pipes . . . . . . . . . . . . . . . 186
9.2.4 Laminar Flow in Pipes (Perry and Chilton,
pg. 168 (1984)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2.5 Laminar Flow in Pipes, Constant Heat Input
Rate at the Wall (Kays and Crawford 1980) . . . . . . . . . 186
9.2.6 Laminar Flow in Pipes, Constant Wall
Temperature (Kays and Crawford 1980) . . . . . . . . . . . . 187
9.2.7 Flow of Gases Normal to a Single Cylinder . . . . . . . . . . 188
9.2.8 Flow of Liquids Normal to a Single Cylinder . . . . . . . . 189
9.2.9 Flow of Gases Past a Sphere . . . . . . . . . . . . . . . . . . . . . 189
9.2.10 Flow of Liquids Past a Sphere . . . . . . . . . . . . . . . . . . . 189
9.2.11 Other Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Contents ix
9.2.12 Condensation on Vertical Tubes . . . . . . . . . . . . . . . . . 190
9.2.13 Agitated Vessels to Jacketed Walls . . . . . . . . . . . . . . . 190
9.2.14 Single Particles Falling Through Gases
and Liquids (Ranz and Marshall 1952) . . . . . . . . . . . . 191
9.2.15 Fluid to Particles in Fixed Beds
(Kunii and Levenspiel, 1991) . . . . . . . . . . . . . . . . . . . 191
9.2.16 Gas to Fluidized Particles . . . . . . . . . . . . . . . . . . . . . . 192
9.2.17 Fluidized Beds to Immersed Tubes . . . . . . . . . . . . . . . 192
9.2.18 Fixed and Fluidized Particles to Bed Surfaces . . . . . . . 192
9.2.19 Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.2.20 Natural Convection: Vertical Plates
and Cylinders, L > 1 m . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2.21 Natural Convection: Spheres and Horizontal
Cylinders, d < 0.2 m . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.22 Natural Convection for Fluids in Laminar
Flow Inside Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.23 Natural Convection: Horizontal Plates . . . . . . . . . . . . . 195
9.2.24 Other Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.3 Heat Transfer by Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.3.1 Radiation from a Body . . . . . . . . . . . . . . . . . . . . . . . . 196
9.3.2 Radiation onto a Body . . . . . . . . . . . . . . . . . . . . . . . . 197
9.3.3 Energy Interchange Between a Body
and Its Enveloping Surroundings . . . . . . . . . . . . . . . . 197
9.3.4 Absorptivity and Emissivity . . . . . . . . . . . . . . . . . . . . 197
9.3.5 Greybodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.3.6 Radiation Between Two Adjacent Surfaces . . . . . . . . . 199
9.3.7 Radiation Between Nearby Surfaces
with Intercepting Shields . . . . . . . . . . . . . . . . . . . . . . 199
9.3.8 View Factors for Blackbodies . . . . . . . . . . . . . . . . . . . 200
9.3.9 View Factor for Two Blackbodies
(or GreyBodies) Plus Reradiating Surfaces . . . . . . . . . 202
9.3.10 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.3.11 Estimating the Magnitude of hr . . . . . . . . . . . . . . . . . . 208
References and Related Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
10 Combination of Heat Transfer Resistances . . . . . . . . . . . . . . . . . . . 211
10.1 Fluid–Fluid Heat Transfer Through a Wall . . . . . . . . . . . . . . . . 212
10.2 Fluid–Fluid Transfer Through a Cylindrical Pipe Wall . . . . . . . 214
10.3 Conduction Across a Wall Followed
by Convection and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.4 Convection and Radiation to Two Different
Temperature Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.5 Determination of Gas Temperature . . . . . . . . . . . . . . . . . . . . . 218
10.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
x Contents
11 Unsteady-State Heating and Cooling of Solid Objects . . . . . . . . . . . 223
11.1 The Cooling of an Object When All the Resistance
Is at Its Surface (Bi ¼ hL/ks!0) . . . . . . . . . . . . . . . . . . . . . . . 225
11.2 The Cooling of an Object Having Negligible Surface
Resistance (Bi ¼ hL/ks!1) . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.3 The Cooling of an Object Where Both Surface
and Internal Resistances to Heat Flow Are Important
(0.1 < Bi < 40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
11.4 The Cooling of a Semi-infinite Solid for Negligible
Surface Resistance (Bi ¼ hL/ks! 1) . . . . . . . . . . . . . . . . . . . . 230
11.5 The Cooling of a Semi-infinite Body Including
a Surface Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11.6 Heat Loss in Objects of Size L for Short Cooling Times . . . . . . 239
11.7 The Cooling of Finite Objects Such as Cubes, Short
Cylinders, Rectangular Parallelepipeds, and So On . . . . . . . . . . 239
11.8 Intrusion of Radiation Effects . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.9 Note on the Use of the Biot and Fourier Numbers . . . . . . . . . . 240
11.9.1 Assumption A. Particle Conduction
Controls: Bi !1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.9.2 Assumption B. Film Resistance
Controls: Bi !0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.9.3 Assumption C. Accounting for Both Resistances . . . . . 243
References and Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
12 Introduction to Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.1 Recuperators (Through-the-Wall Nonstoring Exchangers) . . . . . 253
12.2 Direct-Contact Nonstoring Exchangers . . . . . . . . . . . . . . . . . . 254
12.3 Regenerators (Direct-Contact Heat Storing Exchangers) . . . . . . 256
12.4 Exchangers Using a Go-Between Stream . . . . . . . . . . . . . . . . . 257
12.4.1 The Heat Pipe for Heat Exchange at a Distance . . . . . . 257
12.4.2 Solid–Solid Heat Transfer . . . . . . . . . . . . . . . . . . . . . 258
12.4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
13 Recuperators: Through-the-Wall Nonstoring Exchangers . . . . . . . 261
13.1 Countercurrent and Cocurrent Plug Flow . . . . . . . . . . . . . . . . . 263
13.1.1 No Phase Change, Cp Independent
of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
13.1.2 Exchangers with a Phase Change . . . . . . . . . . . . . . . . 266
13.2 Shell and Tube Exchangers ........................... 267
13.3 Crossflow and Compact Exchangers . . . . . . . . . . . . . . . . . . . . 273
13.4 Cold Fingers or Bayonet Exchangers . . . . . . . . . . . . . . . . . . . . 278
13.5 Mixed Flow L/Plug Flow G Exchangers . . . . . . . . . . . . . . . . . . 281
13.6 Mixed Flow L/Mixed Flow G Exchangers ................ 282
13.7 Heating a Batch of Fluid ............................. 282
Contents xi
13.8 Uniformly Mixed Batch L/Mixed Flow G Exchangers . . . . . . . 283
13.9 Uniformly Mixed Batch L/Isothermal, Mixed Flow G
(Condensation or Boiling) Exchangers . . . . . . . . . . . . . . . . . . . 285
13.10 Uniformly Mixed Batch L/Plug Flow G Exchangers . . . . . . . . . 286
13.11 Uniformly Mixed Batch L/External Exchanger
with Isothermal G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
13.12 Uniformly Mixed Batch L/External Shell
and Tube Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
13.13 Final Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
References and Related Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14 Direct-Contact Gas–Solid Nonstoring Exchangers . . . . . . . . . . . . . 305
14.1 Fluidized Bed Heat Exchangers: Preliminary
Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
14.2 Mixed Flow G/Mixed Flow S or Single-Stage
Fluidized Bed Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.3 Counterflow Stagewise Fluidized Bed Exchangers . . . . . . . . . . 308
14.4 Crossflow Stagewise Fluidized Bed Exchangers . . . . . . . . . . . . 310
14.5 Countercurrent Plug Flow Exchangers . . . . . . . . . . . . . . . . . . . 311
14.6 Crossflow of Gas and Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 313
14.6.1 Well-Mixed Solids/Plug Flow Gas . . . . . . . . . . . . . . . 313
14.6.2 Solids Mixed Laterally but Unmixed
Along Flow Path/Plug Flow Gas . . . . . . . . . . . . . . . . . 314
14.6.3 Solids Unmixed/Plug Flow Gas . . . . . . . . . . . . . . . . . 315
14.7 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
14.8 Related Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
15 Heat Regenerators: Direct-Contact Heat Storing Exchangers
Using a Batch of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
15.1 Packed Bed Regenerators: Preliminary . . . . . . . . . . . . . . . . . . . 326
15.1.1 Spreading of a Temperature Front . . . . . . . . . . . . . . . . 326
15.1.2 Models for the Temperature Spread . . . . . . . . . . . . . . 327
15.1.3 Measure of Thermal Recovery Efficiency . . . . . . . . . . 329
15.1.4 Periodic Cocurrent and Countercurrent Operations . . . . 330
15.2 Packed Bed Regenerators: Flat Front Model . . . . . . . . . . . . . . . 331
15.2.1 Cocurrent Operations with ^t h¼^t c¼^t . . . . . . . . . . . . . . 331
15.2.2 Countercurrent Operations with ^t h¼^t c¼^t . . . . . . . . . . 332
15.2.3 Comments on the Flat Front Model . . . . . . . . . . . . . . . 332
15.3 Packed Bed Regenerators: Dispersion Model . . . . . . . . . . . . . . 333
15.3.1 Evaluation of σ2
, the Quantity Which Represents
the Spreading of the Temperature Front . . . . . . . . . . . 333
15.3.2 One-Pass Operations; Dispersion Model . . . . . . . . . . . 335
15.3.3 Periodic Cocurrent Operations with Equal Flow
Rates of Hot and Cold Fluids or ^t h¼^t c¼tsw
Dispersion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
xii Contents
15.3.4 Periodic Countercurrent Operations with Equal Flow
Rates of Hot and Cold Fluids or ^t h¼^t c
Dispersion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
15.3.5 Comments on the Dispersion Model . . . . . . . . . . . . . . 340
15.4 Fluidized Bed Regenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
15.4.1 Efficiency of One-Pass Operations . . . . . . . . . . . . . . . 341
15.4.2 Efficiency of Periodic Operations . . . . . . . . . . . . . . . . 343
15.4.3 Comments on Fluidized Bed Regenerators . . . . . . . . . 344
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
16 Potpourri of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Appendix: Dimensions, Units, Conversions, Physical Data,
and Other Useful Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Contents xiii