Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Continuum mechanics: Elasticity, plasticity, viscoelasticity
Nội dung xem thử
Mô tả chi tiết
CONTINUUM MECHANICS
Elasticity, Plasticity, Viscoelasticity
9779_C000.fm Page i Tuesday, October 10, 2006 6:24 AM
9779_C000.fm Page ii Tuesday, October 10, 2006 6:24 AM
CONTINUUM MECHANICS
Ellis H. Dill
Elasticity, Plasticity, Viscoelasticity
9779_C000.fm Page iii Tuesday, October 10, 2006 6:24 AM
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2007 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number-10: 0-8493-9779-0 (Hardcover)
International Standard Book Number-13: 978-0-8493-9779-0 (Hardcover)
This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.
No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Dill, Ellis Harold, 1932-
Continuum mechanics : elasticity, plasticity, viscoelasticity / by Ellis Harold
Dill.
p. cm.
Includes bibliographical references and index.
ISBN 0-8493-9779-0 (alk. paper)
1. Continuum mechanics. 2. Elasticity. 3. Plasticity. 4. Viscoelasticity. I.
Title.
QA808.2.D535 2006
531--dc22 2006048958
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
9779_C000.fm Page iv Tuesday, October 10, 2006 6:24 AM
Preface
This book is intended as a reference book for professional engineers and a text for
first-year graduate students in engineering. Books on continuum mechanics are
usually limited to elasticity and fluid mechanics. I have included a thorough treatment
of the constitutive relations for the theory of plasticity and viscoelasticity, and an
introduction to the continuum model for fatigue and fracture mechanics. Because
the complete equations for such materials can rarely be solved in closed form, I have
also included the formulation of numerical solution by the finite element method.
The last chapter provides the mathematical tools and results that are used in the
remainder of the book. I have reversed the usual order of the chapters so that readers
who have the necessary mathematical background will not be subjected to a review
of mathematics on the first page, and so that instructors may cover only the mathematical results that are not familiar to their class. Study of the subject will normally
begin with some part of Chapter 7.
Chapter 1 covers the general and exact formulation of the continuum model for
the thermomechanics of materials. The exact equations of geometry of deformation
and motion, conservation of mass, balance of momentum, and balance of energy are
derived. The mechanics and thermodynamics of Kelvin-Voigt viscoelastic materials
and viscous fluids are fully treated.
Chapter 2 treats the exact nonlinear equations of elasticity and thermoelasticity.
This includes material symmetries, conjugate measures of stress and strain, objective
stress rates, and energy principles. Examples of explicit constitutive models that
have been found to be important in engineering applications are fully developed.
Chapter 3 contains a full treatment of the equations of small deformations of an
elastic body. The equations are derived in both tensor notation and in the matrix
notation that is most commonly used for numerical solution. Energy principles that
underlay the numerical methods are developed for a general assembly of finite
elements. The solution of the equations by the finite element method is presented
with examples.
Chapter 4 begins with the classical theory of plasticity for small deformations.
It includes a detailed treatment of isotropic hardening, kinematic hardening, and
combined hardening models. The general formulation in strain space is developed
along with the work postulates of Drucker and Ilyushin. The method of solution of
the plasticity equations by the finite element method is derived. The chapter concludes with an introduction to the theory of large deformations of plasticity and
thermoplasticity.
Chapter 5 introduces the classical theory of linear viscoelasticity by means of
rheological models and proceeds to the formulation of the general relations as
hereditary integral equations. The dependence on temperature and the thermorheo9779_C000.fm Page v Tuesday, October 10, 2006 6:24 AM
logically simple model are included. The exact theory for large deformations and
the thermodynamics of materials with fading memory are fully developed.
Chapter 6 begins with linear elastic fracture mechanics wherein initiation of
crack propagation is determined by the critical value of the stress intensity factor.
The growth of a crack according to the Paris formula leads to Miner’s formula for
fatigue life.
Direct solutions of the basic equations are not discussed beyond the simple
deformations, such as the tensile test, which are needed to illustrate the significance
of the material parameters. It is assumed that the first course in continuum mechanics
is followed by a course on numerical methods (e.g., the finite element method), which
provides the tools needed to solve the equations in practical situations, and by classical
courses on elasticity and plasticity. However, I have included a complete derivation
of the basic equations and solution procedures for the finite element method.
I recognize that the treatment is concise. I have attempted to cover only the
essentials of the subject and to provide the tools necessary for comprehension of
the technical literature and the commercial finite element programs. I apologize in
advance to all of the originators of this material. I have long ago forgotten where I
learned the theory.
First causes are not known to us, but they are subject to simple and constant
laws that can be discovered by observation.
Jean Baptiste Joseph Fourier (1768–1830),
Théorie Analytique de la Chaleur, 1822
9779_C000.fm Page vi Tuesday, October 10, 2006 6:24 AM
Author
Ellis Harold Dill earned his B.S., M.S., and Ph.D. from the University of California—Berkeley in civil engineering. He taught aeronautical engineering at the University of Washington, in Seattle, from 1956 to 1977. He was dean of engineering
at Rutgers, the State University of New Jersey, from 1977 to 1998. He is currently
university professor at Rutgers, teaching mechanical and aerospace engineering. His
principal research areas include aircraft structures, analysis of plates and shells, solid
mechanics, and the finite element method of analysis.
9779_C000.fm Page vii Tuesday, October 10, 2006 6:24 AM
9779_C000.fm Page viii Tuesday, October 10, 2006 6:24 AM
Contents
Chapter 1 Fundamentals of Continuum Mechanics............................................. 1
1.1 Material Models ............................................................................................... 1
1.2 Classical Space-Time....................................................................................... 3
1.3 Material Bodies................................................................................................ 4
1.4 Strain ................................................................................................................ 6
1.5 Rate of Strain ................................................................................................. 10
1.6 Curvilinear Coordinate Systems .................................................................... 13
1.7 Conservation of Mass .................................................................................... 16
1.8 Balance of Momentum .................................................................................. 18
1.8.1 Virtual Work....................................................................................... 22
1.8.2 Physical Components......................................................................... 23
1.9 Balance of Energy.......................................................................................... 25
1.10 Constitutive Equations ................................................................................... 26
1.11 Thermodynamic Dissipation.......................................................................... 28
1.12 Objectivity: Invariance for Rigid Motions .................................................... 29
1.13 Coleman-Mizel Model ................................................................................... 32
1.13.1 Nonlinear Kelvin-Voigt Materials...................................................... 34
1.14 Fluid Mechanics............................................................................................. 35
1.14.1 Objectivity.......................................................................................... 36
1.14.2 Dissipation Principle.......................................................................... 37
1.14.3 Thermodynamics of Fluids ................................................................ 40
1.14.4 Couette Flow ...................................................................................... 43
1.15 Problems for Chapter 1.................................................................................. 45
1.16 Bibliography................................................................................................... 48
Chapter 2 Nonlinear Elasticity ........................................................................... 49
2.1 Thermoelasticity............................................................................................. 49
2.2 Material Symmetries...................................................................................... 53
2.3 Isotropic Materials ......................................................................................... 55
2.3.1 Principal Stresses and Principal Extensions...................................... 58
2.3.2 Tensile Test......................................................................................... 61
2.4 Incompressible Materials ............................................................................... 63
2.5 Conjugate Measures of Stress and Strain...................................................... 65
2.6 Some Symmetry Groups................................................................................ 68
2.7 Rate Formulations for Elastic Materials........................................................ 73
2.8 Energy Principles ........................................................................................... 77
2.8.1 Potential Energy................................................................................. 77
2.8.2 Complementary Energy ..................................................................... 79
9779_C000.fm Page ix Tuesday, October 10, 2006 6:24 AM
2.9 Geometry of Small Deformations ................................................................. 79
2.10 Linear Elasticity ............................................................................................. 81
2.10.1 Anisotropic Materials......................................................................... 85
2.11 Special Constitutive Models for Isotropic Materials .................................... 86
2.11.1 Linear Stress–Strain Model ............................................................... 91
2.11.2 Kirchhoff Model ................................................................................ 93
2.11.3 Blatz-Ko Model.................................................................................. 94
2.11.4 Generalized Mooney-Rivlin Model ................................................... 96
2.11.5 Ogden Foam....................................................................................... 99
2.11.6 Logarithmic Strain ........................................................................... 100
2.11.7 Gent Model ...................................................................................... 101
2.11.8 Yeoh Model...................................................................................... 103
2.12 Mechanical Restrictions on the Constitutive Relations .............................. 105
2.12.1 Tensile Test....................................................................................... 106
2.12.2 Volumetric Strain ............................................................................. 107
2.12.3 The Pressure-Compression (P-C) Inequality................................... 107
2.12.4 The Tension-Extension Inequality ................................................... 107
2.12.5 Extension-Tension (E-T) Inequalities.............................................. 108
2.12.6 Ordered Forces (O-F) Inequalities................................................... 108
2.12.7 General Condition of Monotonicity (GCM) ................................... 108
2.13 Problems for Chapter 2................................................................................ 110
2.14 Bibliography................................................................................................. 112
Chapter 3 Linear Elasticity ............................................................................... 113
3.1 Basic Equations............................................................................................ 113
3.2 Plane Strain .................................................................................................. 117
3.3 Plane Stress .................................................................................................. 118
3.4 Properties of Solutions................................................................................. 119
3.5 Potential Energy........................................................................................... 122
3.5.1 Proof of Minimum Potential Energy............................................... 124
3.6 Special Matrix Notation............................................................................... 126
3.7 The Finite Element Method of Solution ..................................................... 127
3.7.1 Basic Equations in Matrix Notation................................................ 133
3.7.2 Basic Equations Using Virtual Work............................................... 135
3.7.3 Displacements Are Underestimated................................................. 136
3.7.4 Dynamical Equations ....................................................................... 137
3.7.5 Example Problem............................................................................. 139
3.8 General Equations for an Assembly of Elements ....................................... 139
3.8.1 Generalized Variational Principle .................................................... 141
3.8.2 Potential Energy............................................................................... 142
3.8.3 Hybrid Displacement Functional..................................................... 143
3.8.4 Hybrid Stress and Complementary Energy..................................... 143
3.8.5 Mixed Methods of Analysis............................................................. 145
3.8.6 Nearly Incompressible Materials..................................................... 148
9779_C000.fm Page x Tuesday, October 10, 2006 6:24 AM
3.9 Finite Element Analysis for Large Deformations ....................................... 149
3.9.1 Example Problem............................................................................. 155
3.10 Problems for Chapter 3................................................................................ 156
3.11 Bibliography................................................................................................. 158
Chapter 4 Plasticity........................................................................................... 159
4.1 Classical Theory of Plasticity...................................................................... 159
4.2 Work Principle ............................................................................................. 163
4.3 von Mises-Type Yield Criterion................................................................... 165
4.4 Hill Yield Criterion for Orthotropic Materials ............................................ 168
4.4.1 Orthotropic Materials....................................................................... 169
4.4.2 Transverse Isotropy.......................................................................... 170
4.4.3 Bauschinger Effect........................................................................... 171
4.5 Isotropic Hardening...................................................................................... 172
4.5.1 Strain Hardening .............................................................................. 172
4.5.2 Work Hardening............................................................................... 176
4.6 Kinematic Hardening ................................................................................... 177
4.6.1 Theory of Prager .............................................................................. 177
4.6.2 Theory of Ziegler............................................................................. 181
4.7 Combined Hardening laws........................................................................... 182
4.7.1 Isotropic Strain Hardening with Prager’s Rule
for Kinematic Hardening ................................................................. 182
4.7.2 Isotropic Work Hardening and Prager’s Rule ................................. 184
4.7.3 Isotropic Strain Hardening with Ziegler’s Rule
for Kinematic Hardening ................................................................. 185
4.7.4 Chaboche’s Model ........................................................................... 186
4.8 General Equations of Plasticity ................................................................... 187
4.9 Strain Formulation of Plasticity................................................................... 190
4.9.1 Work Postulate ................................................................................. 191
4.10 Finite Element Analysis............................................................................... 197
4.10.1 Example Problem............................................................................. 198
4.11 Large Deformations ..................................................................................... 199
4.11.1 Approximation for the Materially Linear Case............................... 203
4.11.2 Work Postulate ................................................................................. 204
4.11.3 Rate Formulations............................................................................ 206
4.12 Thermodynamics of Elastic-Plastic Materials............................................. 207
4.13 Problems for Chapter 4................................................................................ 210
4.14 Bibliography................................................................................................. 211
Chapter 5 Viscoelasticity .................................................................................. 213
5.1 Linear Viscoelasticity................................................................................... 213
5.1.1 General Model ................................................................................. 221
5.1.2 Slow or Rapid Deformations ........................................................... 226
5.1.3 Symmetry of the Relaxation Modulus ............................................ 226
9779_C000.fm Page xi Tuesday, October 10, 2006 6:24 AM
5.2 Effect of Temperature .................................................................................. 230
5.3 Nonlinear Viscoelasticity ............................................................................. 234
5.4 Thermodynamics of Materials with Fading Memory ................................. 235
5.5 Problems for Chapter 5................................................................................ 238
5.6 Bibliography................................................................................................. 238
Chapter 6 Fracture and Fatigue ........................................................................ 239
6.1 Fracture Criterion......................................................................................... 239
6.2 Plane Crack through a Sheet ....................................................................... 241
6.3 Fracture Modes ............................................................................................ 244
6.4 Calculation of the Stress Intensity Factor ................................................... 245
6.5 Crack Growth............................................................................................... 247
6.6 Problems for Chapter 6................................................................................ 251
6.7 Bibliography................................................................................................. 251
Chapter 7 Mathematical Tools for Continuum Mechanics .............................. 253
7.1 Sets of Real Numbers .................................................................................. 253
7.1.1 Indicial Notation .............................................................................. 253
7.1.2 Summation Convention.................................................................... 253
7.1.3 The Kronecker Delta........................................................................ 254
7.1.4 The Permutation Symbol ................................................................. 256
7.1.5 Symmetry and Skew-Symmetry ...................................................... 257
7.1.6 Integral Transformations.................................................................. 259
7.2 Matrices........................................................................................................ 260
7.2.1 Matrix Notation................................................................................ 260
7.2.2 Matrix Addition and Multiplication................................................. 263
7.2.3 Special Matrices............................................................................... 264
7.2.4 Kronecker Products.......................................................................... 266
7.2.5 Determinants .................................................................................... 269
7.2.6 Inverse Matrix .................................................................................. 271
7.2.7 Linear Algebraic Equations ............................................................. 271
7.3 Vector Analysis ............................................................................................ 272
7.3.1 Vector Algebra ................................................................................. 272
7.3.2 Derivatives of Vectors ...................................................................... 276
7.3.3 Base Vectors ..................................................................................... 276
7.3.4 Curvilinear Coordinates and Covariant Base Vectors ..................... 280
7.3.5 Gradient, Divergence, and Curl of Vectors ..................................... 284
7.3.6 Cylindrical Coordinates ................................................................... 285
7.4 Tensors ......................................................................................................... 287
7.4.1 Tensor Algebra ................................................................................. 287
7.4.2 Tensor Product of Vectors and Components of Tensors ................. 289
7.4.3 Derivatives of Tensors...................................................................... 293
7.4.4 Trace of a Tensor ............................................................................. 294
7.4.5 Transpose of a Tensor and Dot from the Left................................. 295
9779_C000.fm Page xii Tuesday, October 10, 2006 6:24 AM
7.4.6 Principal Invariants of Tensors ........................................................ 297
7.4.7 Regular, Singular, and Inverse Tensors ........................................... 299
7.4.8 Eigenvalues, Eigenvectors, and Eigenprojections
of Symmetric Tensors ...................................................................... 301
7.4.9 Canonical Representation of Tensors .............................................. 304
7.4.10 Polar Decomposition of Tensors...................................................... 307
7.4.11 Cayley-Hamilton Theorem and Alternate Invariants....................... 308
7.4.12 Higher-Order Tensors....................................................................... 309
7.5 Isotropic Functions....................................................................................... 311
7.5.1 Scalar-Valued Functions of One Tensor.......................................... 311
7.5.2 Scalar-Valued Functions of Two Tensors ........................................ 312
7.5.3 Linear Isotropic Tensor-Valued Functions of a Tensor................... 314
7.5.4 General Isotropic Tensor-Valued Functions of a Tensor................. 315
7.6 Abstract Derivatives..................................................................................... 316
7.6.1 Real-Valued Functions of Vectors ................................................... 316
7.6.2 Vector-Valued Functions of Vectors ................................................ 318
7.6.3 Scalar-Valued Functions of Tensors ................................................ 319
7.6.4 Tensor-Valued Functions of Tensors ............................................... 322
7.6.5 Multiple Arguments and the Chain Rule......................................... 323
7.7 Some Basic Mathematical Definitions and Theorems ................................ 324
7.7.1 Fields ................................................................................................ 324
7.7.2 Vector Spaces ................................................................................... 324
7.7.3 Metric Spaces................................................................................... 325
7.7.4 Normed Spaces, Banach Spaces...................................................... 326
7.7.5 Scalar Product and Hilbert Space.................................................... 327
7.7.6 Fading Memory Space..................................................................... 327
7.7.7 Derivative of a Function .................................................................. 328
7.8 Problems for Chapter 7................................................................................ 329
7.9 Bibliography................................................................................................. 331
Index...................................................................................................................... 333
9779_C000.fm Page xiii Tuesday, October 10, 2006 6:24 AM
9779_C000.fm Page xiv Tuesday, October 10, 2006 6:24 AM