Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

CHƯƠNG 10: CÁC PHƯƠNG PHÁP TÍNH QUÁ TRÌNH QUÁ ĐỘ TRONG MẠCH ĐIỆN TUYẾN TÍNH MÔN CƠ SỞ
Nội dung xem thử
Mô tả chi tiết
Cơ sở kỹ thuật điện 1 - Nguyễn Việt Sơn - 2010 1
CƠ SỞ KỸ THUẬT ĐIỆN 1
Chƣơng 10: Các phƣơng pháp tính quá trình quá độ
trong mạch điện tuyến tính.
I. Phƣơng pháp tích phân kinh điển.
II. Phƣơng pháp tích phân Duyamen và hàm Green.
III. Phƣơng pháp toán tử Laplace.
Cơ sở kỹ thuật điện 1 - Nguyễn Việt Sơn - 2010 2
Chƣơng 10: Các phƣơng pháp tính quá trình quá độ trong
mạch tuyến tính hệ số hằng
Tƣ tƣởng chung của phƣơng pháp:
Mô hình toán học của bài toán quá trình quá độ trong mạch tuyến tính là Hệ phương trình vi
phân + sơ kiện.
Đối với phương pháp tích phân kinh điển, ta sử dụng nguyên tắc xếp chồng trong mạch tuyến
tính để giải.
Ý nghĩa:
Nghiệm xác lập xxl(t):
Về mặt vật lý:
o Nghiệm xác lập được tìm ở chế độ mới (sau khi đóng cắt khóa K).
o Nghiệm xác lập được nguồn (kích thích) của mạch duy trì quy luật biến thiên của
nó đặc trưng cho quy luật biến thiên của nguồn.
( ) ( ) ( ) qd xl td x t x t x t
I. Phƣơng pháp tích phân kinh điển.
I.1. Nội dung phƣơng pháp:
Tìm nghiệm của quá trình quá độ xqđ(t) dưới dạng xếp chồng nghiệm của quá trình xác lập xxl(t) và
nghiệm của quá trình tự do xtd(t).
Cơ sở kỹ thuật điện 1 - Nguyễn Việt Sơn - 2010 3
Chƣơng 10: Các phƣơng pháp tính quá trình quá độ trong
mạch tuyến tính hệ số hằng
I.1. Nội dung phƣơng pháp.
Ý nghĩa:
Nghiệm xác lập xxl(t):
Về mặt toán học:
o Nghiệm xác lập là nghiệm riêng của phương trình vi phân có vế phải là kích thích
của mạch ta đã biết cách tính nghiệm xác lập khi kích thích của mạch là nguồn
hằng, nguồn điều hòa, hay nguồn chu kỳ.
Nghiệm tự do xtd(t):
Về mặt vật lý:
o Nghiệm tự do không được nguồn duy trì.
o Nghiệm tự do tồn tại trong mạch là do quá trình đóng cắt khóa K làm thay đổi kết
cấu hay thông số của mạch.
Về mặt toán học:
Nghiệm tự do là nghiệm riêng của phương trình vi phân thuần nhất (phương trình vi
phân có vế phải bằng 0)
( ) ( ) ( ) qd xl td x t x t x t
Cơ sở kỹ thuật điện 1 - Nguyễn Việt Sơn - 2010 4
Chƣơng 10: Các phƣơng pháp tính quá trình quá độ trong
mạch tuyến tính hệ số hằng
I.1. Nội dung phƣơng pháp.
Về mặt toán học, nghiệm tự do của phương trình thuần nhất có dạng:
Mặt khác, ta có đạo hàm, tích phân của hàm A.e
pt luôn có dạng hàm mũ:
( ) . pt
td x t Ae
( ) . . . ( )
( ) ( ). . . .
td pt
td
pt pt td
td
dx t p A e p x t
dt
A x t x t dt A e dt e
p p
Như vậy, phương trình vi phân thuần nhất sẽ có dạng:
2
( , . , . ..., . ) 0 n
td td td td x p x p x p x
Giải phương trình ta có được (n) nghiệm {p1
...pn}. Với mỗi pk
cho ta một nghiệm dạng Ak
.ep
k
.t
Vậy nghiệm của quá trình quá độ sẽ có dạng:
.
1
( ) ( ) . k
n
p t
qd xl k
k
x t x t A e
Cần lập và giải phương trình
đặc trưng để tìm nghiệm tự do.
Để phương trình vi phân có nghiệm không triệt tiêu các hệ số của nó phải triệt tiêu.
p 0
(phương trình đặc trưng)
Cơ sở kỹ thuật điện 1 - Nguyễn Việt Sơn - 2010 5
Chƣơng 10: Các phƣơng pháp tính quá trình quá độ trong
mạch tuyến tính hệ số hằng
I.2. Lập phƣơng trình đặc trƣng.
Nghiệm tự do là nghiệm của phương trình vi phân thuần nhất (không có vế phải). Vậy đối với bài
toán mạch, đó là phương trình vi phân được lập cho các mạch điện triệt tiêu nguồn.
Các cách lập phƣơng trình đặc trƣng của mạch:
Đại số hóa phương trình thuần nhất:
Lập (hệ) phương trình vi tích phân của mạch ở chế độ mới.
Loại bỏ các nguồn kích thích thu được phương trình vi phân thuần nhất.
Thay thế:
(.) (.)
1
(.). (.)
d
p
dt
dt
p
Rút ra được phương trình đặc trưng
(ma trận đặc trưng)
Cho: Δp = 0 tìm được các số mũ đặc trưng pk
.