Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

CÁC BT MẪU CÓ LỜI GIẢI DÀNH CHO HỌC SINH
Nội dung xem thử
Mô tả chi tiết
TRÖÔØNG THCS PHUÙ THOÏ QUAÄN 11 GV: CAO MINH TAØI TRANG 1
CAÙC BAØI TAÄP MAÃU
1/ x(x–1)(2–3x) = 0
⇔ x = 0 hay x– 1 = 0 hay 2–3x = 0
⇔ x= 0 hay x = 1 hay –3x = –2
⇔ x = 0 hay x = 1 hay x = 2
3
2/ ( 1
2
x +1)(9 x
2
–25 ) = 0
⇔ (
1
2
x +1)(3x–5)(3x+5) = 0
⇔
1
2
x = –1 hay 3x = 5 hay 3x = –5
⇔ x = –2 hay x =
5
3
hay x =
−5
3
3/ x(
x
3
–2)( x
2
+3) = 0
⇔ x = 0 hay
x
3
–2 = 0 hay x
2 +3 = 0
⇔ x= 0 hay
x
3
= 2 hay x
2 =–3 (voâ lí)
⇔ x = 0 hay x = 6
4/ ( x
2
+2)( x
2
–2x+1) = 0
⇔ ( x
2 +2)(x–1)2 = 0
⇔ x
2 +2 = 0 hay (x–1)2 = 0
⇔ x
2 = –2 (voâ lí) hay x– 1 = 0
⇔ x = 1
5/ 2x(x +3) – 4(x +3) = 0
⇔ (x+3)(2x–4) = 0
⇔ x+3=0 hay 2x–4=0
⇔ x = –3 hay x = 2
6/ x
2
(x+1) – 4(x+1)=0
⇔ (x+1)( x
2 –4) = 0
⇔ (x+1)(x–2)(x+2) = 0
⇔ x= –1 hay x = 2 hay x = –2
7/ (2x–5)(x+4) –(x+4)(x–3) = 0
⇔ (x+4).[(2x–5)–(x–3)]=0
⇔ (x+4)(2x–5–x+3) =0
⇔ (x+4)(x–2) =0
⇔ x = –4 hay x =2
8/ (x–5)2
–2(x–5) =0
⇔ (x–5)(x–5)–2(x–5)=0
⇔ (x–5)[(x–5)–2] =0
⇔ (x–5)(x–7)=0
⇔ x=5 hay x = 7
9/ 5x(x+1)–7(1+x) = 0
⇔ 5x(x+1)–7(x+1)= 0
⇔ (x+1)(5x–7) = 0
⇔ x = –1 hay x =
7
5
10/ 2x(5x–2)–3(2–5x) = 0
⇔ 2x(5x–2)+3(5x–2)= 0
⇔ (5x–2)(2x+3)=0
⇔ x =
2
5
hay x =
−3
2
25/ 4 x
2
–4x+1 = (x–3)2
11/ x(x–2)–3x+6 = 0
⇔ x(x–2)–(3x–6) = 0
⇔ x(x–2)–3(x–2) = 0
⇔ (x–2)(x–3) = 0
⇔ x = 2 hay x = 3
12/ 6(x+2) – x
2
+4 = 0
⇔ 6(x+2) –( x
2 –4) = 0
⇔ 6(x+2) –(x+2)(x–2) = 0
⇔ (x+2)[6–(x–2)] = 0
⇔ (x+2)(6–x+2) = 0
⇔ (x+2)(8–x)=0
⇔ x = –2 hay x = 8
13/ x
3
+2 x
2
–x–2 = 0
⇔ ( x
3 +2 x
2
)–(x+2) = 0
⇔ x
2
(x+2)–(x+2) = 0
⇔ (x+2)( x
2 –1)= 0
⇔ (x+2)(x–1)(x+1)=0
⇔ x =–2 hay x = 1 hay x = –1
14/ x
2
=2x
⇔ x
2 –2x = 0
⇔ x(x–2) = 0
⇔ x = 0 hay x–2 = 0
⇔ x = 0 hay x = 2
15/ (3x+2)(x–4)=2x(x–4)
⇔ (3x+2)(x–4)–2x(x–4) = 0
⇔ (x–4)[(3x+2)–2x] = 0
⇔ (x–4)(3x+2–2x) =0
⇔ (x–4)(x+2)=0
⇔ x= 4 hay x = –2
16/ 5(x+3)(x–2)= 3(x+5)(x–2)
⇔ 5(x+3)(x–2)– 3(x+5)(x–2) = 0
⇔ (x–2)[5(x+3)–3(x+5)] =0
⇔ (x–2)(5x+15–3x–15) = 0
⇔ (x–2)(2x) = 0
⇔ x–2 = 0 hay 2x = 0
⇔ x = 2 hay x = 0
17/ (x–1)(2x–1)=x(1–x)
⇔ (x–1)(2x–1)–x(1–x) = 0
⇔ (x–1)(2x–1) +x(x–1) = 0
⇔ (x–1)(2x–1+x) = 0
⇔ (x–1)(x–1)=0
⇔ x–1 = 0
⇔ x = 1
18/ (2x+2)(x–3)= 3(x+1)
⇔ 2(x+1)(x–3)= 3(x+1)
⇔ 2(x+1)(x–3)– 3(x+1) = 0
⇔ (x+1)[2(x–3)–3] = 0
⇔ (x+1)(2x–6–3) = 0
⇔ (x+1)(2x–9) = 0
⇔ x = –1 hay x = 4,5
34/ 2x – 5 < 5x –3
19/ 3x–12 = 5x(x–4)
⇔ 3(x–4) = 5x(x–4)
⇔ 3(x–4)– 5x(x–4) = 0
⇔ (x–4)(3–5x)=0
⇔ x = 4 hay x =
3
5
20/ x
2
–4 = 0
⇔ (x–2)(x+2) = 0
⇔ x–2 = 0 hay x+2 = 0
⇔ x = 2 hay x = –2
21/ *Caùch 1: 16 x
2
= 1
⇔ x
2 =
1
16
⇔ x = ±
1
4
*Caùch 2: 16 x
2
= 1
⇔ 16 x
2 –1 = 0
⇔ (4x)2
–12
= 0
⇔ (4x–1)(4x+1) = 0
⇔ 4x– 1 = 0 hay 4x+1 = 0
⇔ x =
1
4
hay x =
−1
4
22/ *Caùch 1: 8 x
2
= 2
⇔ x
2 =
2
8
⇔ x
2 =
1
4
⇔ x = ±
1
2
*Caùch 2: 8 x
2
= 2
⇔ 8 x
2 –2 = 0
⇔ 2(4 x
2 –1) = 0
⇔ 2(2x–1)(2x+1) = 0
⇔ 2x–1 = 0 hay 2x+1 = 0
⇔ x =
1
2
hay x =
−1
2
23/ (2x–1)2 = 9x2
⇔ (2x–1)2 –9x2
= 0
⇔ (2x–1)2 –(3x)2
= 0
⇔ [(2x–1)–3x][(2x–1)+3x] = 0
⇔ (–x–1)(5x–1) = 0
⇔ –x–1 = 0 hay 5x–1 = 0
⇔ x = –1 hay x =
1
5
24/ (5x–3)2
–(4x–7)2
= 0
⇔[(5x–3)–(4x–7)][(5x–3)+(4x–7)]=0
⇔ (5x–3–4x+7)(5x–3+4x–7) = 0
⇔ (x+4)(9x–10) = 0
⇔ x+4 = 0 hay 9x– 10 = 0
⇔ x = –4 hay x =
10
9
41/
+ − x x
<
2 3 2
3 2