Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Application of antiferroelectric liquid crystals with high tilt
Nội dung xem thử
Mô tả chi tiết
Application of Antiferroelectric
Liquid Crystals with High Tilt
Koen D’havé
Promotor: prof. dr. ir. H. Pauwels
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Toegepaste Wetenschappen: Elektrotechniek
Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Toegepaste Wetenschappen
Academiejaar: 2001-2002
i
Acknowledgement
ii
Table of contents
1 Introduction 1
1.1 The current display market . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Liquid crystal displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The liquid crystal phase . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Liquid crystal displays; layer by layer . . . . . . . . . . 6
1.3 Quantification of the image quality . . . . . . . . . . . . . . . . . 10
1.4 An overview of this work . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Ferroelectric and antiferroelectric liquid crystals 15
2.1 SmC and SmC* phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Dielectric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Ferroelectric liquid crystal displays . . . . . . . . . . . 22
2.2 The SmCa and SmCa* phases . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Dielectric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Antiferroelectric liquid crystal displays . . . . . . . 36
2.3 The first goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Alignment of AFLCs 39
3.1 Prototype cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Optimization of the buffing parameters . . . . . . . . . . . . . . 42
3.3 Compensating the rubbing directions . . . . . . . . . . . . . . . 45
3.4 Obliquely evaporated SiOx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
iv
4 Orthoconic antiferroelectric liquid crystals 53
4.1 Uniaxial anticlinic conditions . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Isotropic anticlinic conditions . . . . . . . . . . . . . . . . . . . . . . 56
4.3 A solution for the dark state problem of an AFLCD . . . 56
4.4 Orthoconic antiferroelectric liquid crystals . . . . . . . . . . . 58
4.5 Phase modulation by means of OAFLCs . . . . . . . . . . . . . 61
4.5.1 Polarisation switches . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.2 An alternative construction for an OAFLC
display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.3 Ternary phase modulation . . . . . . . . . . . . . . . . . . 64
4.6 The pretransitional effect in AFLCDs . . . . . . . . . . . . . . . . 70
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.8 The second goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Reflective AFLCDs 75
5.1 Normally bright mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Normally dark mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 A λ/4 film between liquid crystal layer
and mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 A λ/4 film between polariser and
liquid crystal layer . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 The third goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6 Light scattering polymer dispersions of OAFLC 83
6.1 Polymer Dispersed Liquid Crystals . . . . . . . . . . . . . . . . . 83
6.2 OAFLC in a polymer matrix . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 The influence of the material parameters . . . . . . . . . . . . . 86
6.3.1 Extinction in a light scattering medium . . . . . . . . 86
6.3.2 Anomalous diffraction . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3 Influence of the tilt angle . . . . . . . . . . . . . . . . . . . . 91
6.3.4 Influence of the birefringence . . . . . . . . . . . . . . . . 93
6.3.5 Viewing angle dependency of the transparent
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7 Conclusions 97
7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
v
A Data sheets 99
A.1 CS4001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 W107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 W107a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.4 W107b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.5 W123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.6 W124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.7 W129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Bibliography 113
vi
List of figures
5
1.1 A schematic comparison between the nematic (N), the cholesteric
(N*) and the smectic A (SmA) phases. . . . . . . . . . . . . . . . . . . . . . . . .
6
1.2 A schematic cross section of the pixels of a typical liquid crystal
display. The purpose and the materials used for the different
layers are further explained in the text. . . . . . . . . . . . . . . . . . . . . . . .
10
1.3 A schematic comparison between (a) a passive matrix and (b) an
active matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
1.4 The wavelength dependency of the transmission of a birefringent
layer between crossed polarisers. The optical thickness of the layer
was optimised for a wavelength of 550 nm. The best choice is k=0,
corresponding to a optical thickness of λ/2. That plot shows least
curvature and hence has the lowest wavelength dependency. The
curve with k=1 corresponds to an optical thickness of 3λ/2. . . . . .
16
2.1 A schematic illustration of the difference between (a) the SmA and
(b) the SmC phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
2.2 A representation of a full pitch length of the helix in the SmC*
phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 A review of the phenomenological angles. . . . . . . . . . . . . . . . . . . . . 18
2.4 The direction of the optic axes for a ferroelectric liquid crystal.. . . 23
23
2.5 The bookshelf geometry of an SSFLCD and its electro-optic application between crossed polarisers. . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
2.6 The chevron profile in an SSFLCD and the stable states in which
the material can be switched. In order to keep a constant layer spacing at the surfaces, the layers have to tilt when the layer thickness
decreases due to the increasing tilt angle of the material. If this
phenomenon occurs in opposite directions at both surfaces a chevron with a sharp tip is created. For the situation represented here,
without surface pretilt, both chevron directions are equally probable and optically identical. If both directions are present in one
cell, they give rise to the characteristic zig-zag or lightning defects.
27
2.7 The operation of the Twisted Smectic Mode in the SmC* phase.
This mode is similar to the twisted nematic mode. The electrooptic behaviour is ‘normally bright’.. . . . . . . . . . . . . . . . . . . . . . . . . .
viii
28
2.8 The operating principle of the V-shaped switching mode in the
SmC* phase. Note that the choice of the directions of polariser and
analyser differ from the TS-mode. The electro-optic behaviour is
also reversed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
2.9 A schematic illustration of the difference between (a) synclinic and
(b) anticlinic behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
2.10 A representation of a full pitch length of the helix in the SmCa* phase. The helix represented here is an idealized structure. To be more
precise the director in adjacent layers of the unit cell does not make
a phase angle difference of exactly 180°. . . . . . . . . . . . . . . . . . . . . . .
32
2.11 The position of the glide mirror plane and the symmetric deformation with respect to the ideal anticlinic structure. When the symmetric deformation reaches 90°, one obtains a synclinic state. At that
moment the angle ψ describes the phase angle of the SmC phase.
This description will allow us to determine the direction of the
principle axes and their matching refractive indices in a more simplified manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12 The direction of the optic axes for an antiferroelectric liquid crystal. 35
2.13 The working principle of an AFLCD. . . . . . . . . . . . . . . . . . . . . . . . . . 37
41
3.1 An adapted buffing machine which allows for easy control over the
buffing directions on the substrates. . . . . . . . . . . . . . . . . . . . . . . . . . .
43
3.2 An image of the alignment for (left) parallel and (right) anti-parallel
assembly. The rubbing directions as well as the directions of
polariser and analyser are indicated in the top right corner of each
picture.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
3.3 The alignment (left) obtained for a cell of which only one substrate
received an optimal buffing treatment. The right part of that picture
shows the deformation of the structure when applying even small
electric fields. The other picture (right) shows the structure after
prolonged addressing of such a cell.. . . . . . . . . . . . . . . . . . . . . . . . . .
45
3.4 The straightening of the smectic layers by an electric field. The chevrons, which are created due to shrinkage of the layers during cool
down, endure a straightening torque. Instead of creating a bookshelf structure, a defect structure in the plane of the cell, which is called the striped texture, is obtained. Between crossed polariser one
sees a grid of alternating bright and dark lines. . . . . . . . . . . . . . . . .
47
3.5 Rubbing and assembly of the substrates for compensation
experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
3.6 Structures obtained for (a) a too small, (b) an almost ideal and (c) a
too large angle between the buffing directions. When the directions
on both substrates are switched we obtain a structure as shown
in (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50
3.7 Typical texture for hybrid cells for which the evaporation angle is
(a) lower than 70°, (b) between 70° and 83° and (c) higher than 83°
with respect to the substrate normal. . . . . . . . . . . . . . . . . . . . . . . . . .
ix
55
4.1 The necessary tilt angle as a function of the symmetric deformation
with respect to the ideal anticlinic structure in order to obtain a
uniaxial phase. The parameters used are: , and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
4.2 Approximation of the striped texture by an alternating bookshelf
structure. The slow axis for a normal AFLC (a) alternates, for an
AFLC with 45° tilt (b) the optic axis is perpendicular to the layer
normal and can therefore not alternate, there is no slow axis in that
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
4.3 This sequence shows the switching from the anticlinic state to the
synclinic state for the orthoconic antiferroelectric material W107.
Note that the defect structure is not visible in the dark anticlinic state. For the bright state the defect structure is of minor importance.
59
4.4 The switching process for a “non-aligned” OAFLC sample between
crossed polarisers. The layer normal is oriented parallel to the
substrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
4.5 The rotation of an OAFLC sample between crossed polarisers.
From the structure outside the pixel area we can conclude that the
structure inside the pixel can not be a perfect alignment of the material. Nevertheless the transmission through the pixel is practically zero for all angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
4.6 A summary of the switchable polarisations for an OAFLC with an
optical thickness equal to a half wavelength. . . . . . . . . . . . . . . . . . .
63
4.7 A summary of the switchable polarisation states for an OAFLC
with an optical thickness equal to a half wavelength. . . . . . . . . . . .
65
4.8 The relation between refractive and diffractive optical elements.
Material with a thickness equal to a multiple of the wavelength and
thus causes a relative phase shift of a multiple of 2π may be removed. The example given here is the principle of non-mechanical
beam steering.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
4.9 Discretisation of the phase profile for pixelated devices. One can either modulate the thickness or the refractive index in order to modulate the relative phase shifts between the pixels. . . . . . . . . . . . . .
67
4.10 Ternary phase modulation in an orthoconic antiferroelectric liquid
crystal. Note that if one rotates the polarisation of the incident light
by 90°, the outer states will be switched. . . . . . . . . . . . . . . . . . . . . . .
69
4.11 A transmissive 1D SLM with 256 electrodes and uncut flexible
interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
4.12 Two SLMs each mounted on a PCB with the necessary driving electronics (designed by T. Matuszczyk). . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 The electroclinic effect in the SmA* and the SmCa* phases. . . . . . . 71
72
4.14 Director profile obtained after exceeding the Fréedericksz
threshold.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76
5.1 A schematic representation of the optical geometry for the normally bright mode of a reflective AFLCD. The anticlinic state is in this
case the bright state.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n1 = 1.5 n2 = 1.51
n3 = 1.7
x
78
5.2 A schematic representation of the optical geometry for a normally
dark mode of a reflective AFLCD wherein the quarter wave film is
placed between the liquid crystal layer and the mirror. The
switched synclinic states are now the bright states. . . . . . . . . . . . . .
79
5.3 Visualisation of the solutions for an optimal bright state. The dotted
line represents the locus of the solutions corresponding to the first
and second maxima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
5.4 A schematic representation of the optical geometry for a normally
dark mode of a reflective AFLCD wherein the quarter wave film is
placed between the polariser and the liquid crystal layer. The synclinic states are the bright states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 The principle behind PDLC devices.. . . . . . . . . . . . . . . . . . . . . . . . . . 84
86
6.2 The principle behind PDOAFLC devices. The layers are straightened out by applying an elctric field. . . . . . . . . . . . . . . . . . . . . . . . . . .
88
6.3 The geometry assumed for the calculation of the total scattering
cross section. The fields are decomposed along the directions of the
eigenpolarisations. Therefore we do not need to take the orientation of the droplets themselves into account. . . . . . . . . . . . . . . . . . .
91
6.4 The influence of the tilt angle on the relative scattering cross section
of the droplets PDOAFLC in the anticlinic state. The parameters
which are used here are: , and . The
polarisation is taken to be along the axis corresponding to . For
the polarisation perpendicular to it, , thus according to
the axis belonging to , the sensitivity of the tilt angle is found to
be even lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
92
6.5 The influence of the index matching on the relative scattering cross
section of droplets PDOAFLC. The parameters used here are:
and . For the perpendicular polarisation the
curves for transform into those for and vice
versa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
93
6.6 The influence of the birefringence on the scattering properties. For
all curves an equally good index matching is assumed. This implies
that the curves for both perpendicular polarisations are almost
equal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
6.7 The viewing angle dependency of the transparent state for a nematic PDLC. The parameters which are used here are: ,
and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
94
6.8 The viewing angle dependency of the transparent state for a
PDOAFLC. The parameters which are used here are: ,
and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
95
6.9 The viewing angle dependency of the transparent state of a
PDOAFLC with low optical anisotropy. The parameters which are
used are: , and . . . . . . . . . . . . . .
100
A.1 Spontaneous polarisation of W107, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
100
A.2 Apparent tilt angle of W107, measured with polarizing microscope
and rotation stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n1 = 1.52 n3 = 1.7 nm = 1.61
n3
α0 = 90°
n1
n1 = 1.52 n3 = 1.7
nm = 1.59 nm = 1.63
ne = 1.7
no = 1.52 nm = 1.521
neff = 1.61
n2 = 1.52 nm = 1.611
neff = 1.56 n2 = 1.52 nm = 1.561
xi
A.3 Helical pitch of W107, measured through selective reflection.. . . . 101
102
A.4 Spontaneous polarisation of W107a, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
102
A.5 Apparent tilt angle of W107a, measured with polarizing microscope and rotation stage.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.6 Helical pitch of W107a, measured through selective reflection.. . . 103
A.7 Threshold field of W107a, measured with a square wave of 10 Hz. 103
104
A.8 Spontaneous polarisation of W107b, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
104
A.9 Apparent tilt angle of W107b, measured with polarizing microscope and rotation stage.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.10 Threshold field of W107b, measured with a square wave of 10 Hz. 105
106
A.11 Spontaneous polarisation of W123, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
106
A.12 Apparent tilt angle of W123, measured with polarizing microscope
and rotation stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.13 Threshold field of W123, measured with a square wave of 10 Hz. 107
108
A.14 Spontaneous polarisation of W124, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
108
A.15 Apparent tilt angle of W124, measured with polarizing microscope
and rotation stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.16 Threshold field of W124, measured with a square wave of 10 Hz. 109
110
A.17 Spontaneous polarisation of W129, measured with capacitance
bridge method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
110
A.18 Apparent tilt angle of W129, measured with polarizing microscope
and rotation stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A.19 Threshold field of W129, measured with a square wave of 10 Hz. 111