Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Vehicle dynamics : theory and application
PREMIUM
Số trang
1074
Kích thước
11.7 MB
Định dạng
PDF
Lượt xem
1879

Vehicle dynamics : theory and application

Nội dung xem thử

Mô tả chi tiết

Vehicle Dynamics

Reza N. Jazar

Theory and Application

2nd Edition

Vehicle Dynamics

Vehicle Dynamics

Reza N. Jazar

Second Edition

Theory and Application

© Springer Science+Business Media New York 2014

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

ISBN 978-1-4614-

DOI 10.1007/978-1-4614-8544-5

Springer New York Heidelberg Dordrecht London

8543-8 ISBN 978-1-4614- eBook) 8544-5 (

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission

or information storage and retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now known or hereafter developed. Exempted from this legal reservation

are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically

for the purpose of being entered and executed on a computer system, for exclusive use by the

purchaser of the work. Duplication of this publication or parts thereof is permitted only under the

provisions of the Copyright Law of the Publisher’s location, in its current version, and permission

for use must always be obtained from Springer. Permissions for use may be obtained through

RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the

respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specific statement, that such names are exempt

from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal responsibility

for any errors or omissions that may be made. The publisher makes no warranty, express or implied,

with respect to the material contained herein.

Reza N. Jazar

School of Aerospace, Mechanical and

RMIT University

Bundoora, VIC

Australia

Manufacturing Engineering

Library of Congress Control Number: 2013951659

Contents

Preface x

1 Tire and Rim Fundamentals 1

1.1 Tires and Sidewall Information . . . . . . . . . . . . . . . . 1

1.2 Tire Components . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Radial and Non-Radial Tires . . . . . . . . . . . . . . . . . 15

1.4 Tread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Tireprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Wheel and Rim . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Vehicle Classications . . . . . . . . . . . . . . . . . . . . . 26

1.7.1 ISO and FHWA Classication . . . . . . . . . . . . . 26

1.7.2 Passenger Car Classications . . . . . . . . . . . . . 29

1.7.3 Passenger Car Body Styles . . . . . . . . . . . . . . 31

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I Vehicle Motion 37

2 Forward Vehicle Dynamics 39

2.1 Parked Car on a Level Road . . . . . . . . . . . . . . . . . . 39

2.2 Parked Car on an Inclined Road . . . . . . . . . . . . . . . 45

2.3 Accelerating Car on a Level Road . . . . . . . . . . . . . . . 50

2.4 Accelerating Car on an Inclined Road . . . . . . . . . . . . 55

2.5 Parked Car on a Banked Road . . . . . . . . . . . . . . . . 66

2.6 F Optimal Drive and Brake Force Distribution . . . . . . . 70

2.7 F Vehicles With More Than Two Axles . . . . . . . . . . . 76

2.8 F Vehicles on a Crest and Dip . . . . . . . . . . . . . . . . 80

2.8.1 F Vehicles on a Crest . . . . . . . . . . . . . . . . . 81

2.8.2 F Vehicles on a Dip . . . . . . . . . . . . . . . . . . 86

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 Tire Dynamics 99

3.1 Tire Coordinate Frame and Tire Force System . . . . . . . 99

3.2 Tire Stiness . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii

v

3.3 Eective Radius . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 F Tireprint Forces of a Static Tire . . . . . . . . . . . . . . 122

3.4.1 F Static Tire, Normal Stress . . . . . . . . . . . . . 123

3.4.2 F Static Tire, Tangential Stresses . . . . . . . . . . 126

3.5 Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . 128

3.5.1 Eect of Speed on the Rolling Friction Coe!cient . 131

3.5.2 Eect of In ation Pressure and Load on the Rolling

Friction Coe!cient . . . . . . . . . . . . . . . . . . . 135

3.5.3 F Eect of Sideslip Angle on Rolling Resistance . . 138

3.5.4 F Eect of Camber Angle on Rolling Resistance . . 138

3.6 Longitudinal Force . . . . . . . . . . . . . . . . . . . . . . . 139

3.7 Lateral Force . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.8 Camber Force . . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.9 Tire Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3.11 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4 Driveline Dynamics 179

4.1 Engine Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 179

4.2 Driveline and E!ciency . . . . . . . . . . . . . . . . . . . . 186

4.3 Gearbox and Clutch Dynamics . . . . . . . . . . . . . . . . 192

4.4 Gearbox Design . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.4.1 Geometric Ratio Gearbox Design . . . . . . . . . . . 201

4.4.2 F Progressive Ratio Gearbox Design . . . . . . . . . 215

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.6 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

II Vehicle Kinematics

5 F Applied Kinematics 233

5.1 Rotation About Global Cartesian Axes . . . . . . . . . . . . 233

5.2 Successive Rotation About Global Cartesian Axes . . . . . 238

5.3 Rotation About Local Cartesian Axes . . . . . . . . . . . . 239

5.4 Successive Rotation About Local Cartesian Axes . . . . . . 243

5.5 General Transformation . . . . . . . . . . . . . . . . . . . . 251

5.6 Local and Global Rotations . . . . . . . . . . . . . . . . . . 258

5.7 Axis-angle Rotation . . . . . . . . . . . . . . . . . . . . . . 259

5.8 Rigid Body Motion . . . . . . . . . . . . . . . . . . . . . . . 264

5.9 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . 267

5.10 F Time Derivative and Coordinate Frames . . . . . . . . . 275

5.11 Rigid Body Velocity . . . . . . . . . . . . . . . . . . . . . . 284

5.12 Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . 288

vi

231

Contents

5.13 Rigid Body Acceleration . . . . . . . . . . . . . . . . . . . . 293

5.14 F Screw Motion . . . . . . . . . . . . . . . . . . . . . . . . 296

5.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

5.16 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

6 Applied Mechanisms 319

6.1 Four-Bar Linkage . . . . . . . . . . . . . . . . . . . . . . . . 319

6.2 Slider-Crank Mechanism . . . . . . . . . . . . . . . . . . . . 339

6.3 Inverted Slider-Crank Mechanism . . . . . . . . . . . . . . . 346

6.4 Instant Center of Rotation . . . . . . . . . . . . . . . . . . . 352

6.5 Coupler Point Curve . . . . . . . . . . . . . . . . . . . . . . 364

6.5.1 Coupler Point Curve for Four-Bar Linkages . . . . . 364

6.5.2 Coupler Point Curve for a Slider-Crank Mechanism . 366

6.5.3 Coupler Point Curve for Inverted Slider-Crank Mech￾anism . . . . . . . . . . . . . . . . . . . . . . . . . . 370

6.6 F Universal Joint . . . . . . . . . . . . . . . . . . . . . . . 371

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

6.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

7 Steering Dynamics 387

7.1 Kinematic Steering . . . . . . . . . . . . . . . . . . . . . . . 387

7.2 Vehicles with More Than Two Axles . . . . . . . . . . . . . 404

7.3 F Vehicle with Trailer . . . . . . . . . . . . . . . . . . . . . 407

7.4 Steering Mechanisms . . . . . . . . . . . . . . . . . . . . . . 411

7.5 F Four wheel steering. . . . . . . . . . . . . . . . . . . . . . 417

7.6 F Road Design . . . . . . . . . . . . . . . . . . . . . . . . . 434

7.7 F Steering Mechanism Optimization . . . . . . . . . . . . . 461

7.8 F Trailer-Truck Kinematics . . . . . . . . . . . . . . . . . . 469

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

7.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 484

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

8 Suspension Mechanisms 497

8.1 Solid Axle Suspension . . . . . . . . . . . . . . . . . . . . . 497

8.2 Independent Suspension . . . . . . . . . . . . . . . . . . . . 508

8.3 Roll Center and Roll Axis . . . . . . . . . . . . . . . . . . . 513

8.4 F Car Tire Relative Angles . . . . . . . . . . . . . . . . . . 524

8.4.1 F Toe . . . . . . . . . . . . . . . . . . . . . . . . . . 527

8.4.2 F Caster Angle . . . . . . . . . . . . . . . . . . . . . 529

8.4.3 F Camber . . . . . . . . . . . . . . . . . . . . . . . 530

8.4.4 F Thrust Angle . . . . . . . . . . . . . . . . . . . . 532

8.5 F Suspension Requirements and Coordinate Frames . . . . 533

8.5.1 Kinematic Requirements . . . . . . . . . . . . . . . . 533

Contents vii

8.5.2 Dynamic Requirements . . . . . . . . . . . . . . . . 534

8.5.3 Wheel, wheel-body, and tire Coordinate Frames . . . 534

8.6 F Caster Theory . . . . . . . . . . . . . . . . . . . . . . . . 544

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

8.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

III Vehicle Dynamics 567

9 F Applied Dynamics 569

9.1 Elements of Dynamics . . . . . . . . . . . . . . . . . . . . . 569

9.1.1 Force and Moment . . . . . . . . . . . . . . . . . . . 569

9.1.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . 570

9.1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 571

9.1.4 Equation of Motion . . . . . . . . . . . . . . . . . . 573

9.1.5 Work and Energy . . . . . . . . . . . . . . . . . . . . 573

9.2 Rigid Body Translational Dynamics . . . . . . . . . . . . . 579

9.3 Rigid Body Rotational Dynamics . . . . . . . . . . . . . . . 582

9.4 Mass Moment Matrix . . . . . . . . . . . . . . . . . . . . . 593

9.5 Lagrange’s Form of Newton’s Equations of Motion . . . . . 603

9.6 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . 610

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620

9.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

10 Vehicle Planar Dynamics 631

10.1 Vehicle Coordinate Frame . . . . . . . . . . . . . . . . . . . 631

10.2 Rigid Vehicle Newton-Euler Dynamics . . . . . . . . . . . . 637

10.3 Force System Acting on a Rigid Vehicle . . . . . . . . . . . 644

10.3.1 Tire Force and Body Force Systems . . . . . . . . . 644

10.3.2 Tire Lateral Force . . . . . . . . . . . . . . . . . . . 648

10.3.3 Two-wheel Model and Body Force Components . . . 649

10.4 Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . . . 659

10.5 Steady-State Turning . . . . . . . . . . . . . . . . . . . . . . 670

10.6 F Linearized Model for a Two-Wheel Vehicle . . . . . . . . 695

10.7 F Transient Response . . . . . . . . . . . . . . . . . . . . . 699

10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

10.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 729

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

11 F Vehicle Roll Dynamics 741

11.1 F Vehicle Coordinate and DOF . . . . . . . . . . . . . . . . 741

11.2 F Equations of Motion . . . . . . . . . . . . . . . . . . . . 742

11.3 F Vehicle Force System . . . . . . . . . . . . . . . . . . . . 746

viii Contents

11.3.1 F Tire and Body Force Systems . . . . . . . . . . . 746

11.3.2 F Tire Lateral Force . . . . . . . . . . . . . . . . . . 749

11.3.3 F Body Force Components on a Two-wheel Model . 752

11.4 F Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . 759

11.5 F Steady-State Motion . . . . . . . . . . . . . . . . . . . . 763

11.6 F Time Response . . . . . . . . . . . . . . . . . . . . . . . 767

11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782

11.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 783

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

IV Vehicle Vibration 795

12 Applied Vibrations 797

12.1 Mechanical Vibration Elements . . . . . . . . . . . . . . . . 797

12.2 Newton’s Method and Vibrations . . . . . . . . . . . . . . . 805

12.3 Frequency Response of Vibrating Systems . . . . . . . . . . 812

12.3.1 Forced Excitation . . . . . . . . . . . . . . . . . . . 813

12.3.2 Base Excitation . . . . . . . . . . . . . . . . . . . . . 823

12.3.3 Eccentric Excitation . . . . . . . . . . . . . . . . . . 835

12.3.4 F Eccentric Base Excitation . . . . . . . . . . . . . 841

12.3.5 F Classication for the Frequency Responses of One￾DOF Forced Vibration Systems . . . . . . . . . . . . 847

12.4 Time Response of Vibrating Systems . . . . . . . . . . . . . 852

12.5 Vibration Application and Measurement . . . . . . . . . . . 864

12.6 F Vibration Optimization Theory . . . . . . . . . . . . . . 869

12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

12.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 882

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

13 Vehicle Vibrations 891

13.1 Lagrange Method and Dissipation Function . . . . . . . . . 891

13.2 F Quadratures . . . . . . . . . . . . . . . . . . . . . . . . . 901

13.3 Natural Frequencies and Mode Shapes . . . . . . . . . . . . 908

13.4 Bicycle Car and Body Pitch Mode . . . . . . . . . . . . . . 915

13.5 Half Car and Body Roll Mode . . . . . . . . . . . . . . . . . 920

13.6 Full Car Vibrating Model . . . . . . . . . . . . . . . . . . . 925

13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933

13.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 934

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936

14 Suspension Optimization 939

14.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 939

14.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . 945

14.3 RMS Optimization . . . . . . . . . . . . . . . . . . . . . . . 949

Contents ix

14.4 F Time Response Optimization . . . . . . . . . . . . . . . . 972

14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

14.6 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 979

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981

15 F Quarter Car Model 985

15.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 985

15.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . 987

15.3 F Natural and Invariant Frequencies . . . . . . . . . . . . . 994

15.4 F RMS Optimization . . . . . . . . . . . . . . . . . . . . 1006

15.5 F Optimization Based on Natural Frequency and Wheel

Travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016

15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022

15.7 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 1023

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025

References 1027

A Frequency Response Curves 1031

B Trigonometric Formulas 1037

C Unit Conversions 1041

Index 1045

x Contents

Dedicated to

my son, Kavosh,

my daughter, Vazan,

and my wife, Mojgan.

Nature is not perfect, not even optimum.

Tải ngay đi em, còn do dự, trời tối mất!