Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Vehicle dynamics : theory and application
Nội dung xem thử
Mô tả chi tiết
Vehicle Dynamics
Reza N. Jazar
Theory and Application
2nd Edition
Vehicle Dynamics
Vehicle Dynamics
Reza N. Jazar
Second Edition
Theory and Application
© Springer Science+Business Media New York 2014
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
ISBN 978-1-4614-
DOI 10.1007/978-1-4614-8544-5
Springer New York Heidelberg Dordrecht London
8543-8 ISBN 978-1-4614- eBook) 8544-5 (
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation
are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically
for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the
provisions of the Copyright Law of the Publisher’s location, in its current version, and permission
for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.
Reza N. Jazar
School of Aerospace, Mechanical and
RMIT University
Bundoora, VIC
Australia
Manufacturing Engineering
Library of Congress Control Number: 2013951659
Contents
Preface x
1 Tire and Rim Fundamentals 1
1.1 Tires and Sidewall Information . . . . . . . . . . . . . . . . 1
1.2 Tire Components . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Radial and Non-Radial Tires . . . . . . . . . . . . . . . . . 15
1.4 Tread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Tireprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Wheel and Rim . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.7 Vehicle Classications . . . . . . . . . . . . . . . . . . . . . 26
1.7.1 ISO and FHWA Classication . . . . . . . . . . . . . 26
1.7.2 Passenger Car Classications . . . . . . . . . . . . . 29
1.7.3 Passenger Car Body Styles . . . . . . . . . . . . . . 31
1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
I Vehicle Motion 37
2 Forward Vehicle Dynamics 39
2.1 Parked Car on a Level Road . . . . . . . . . . . . . . . . . . 39
2.2 Parked Car on an Inclined Road . . . . . . . . . . . . . . . 45
2.3 Accelerating Car on a Level Road . . . . . . . . . . . . . . . 50
2.4 Accelerating Car on an Inclined Road . . . . . . . . . . . . 55
2.5 Parked Car on a Banked Road . . . . . . . . . . . . . . . . 66
2.6 F Optimal Drive and Brake Force Distribution . . . . . . . 70
2.7 F Vehicles With More Than Two Axles . . . . . . . . . . . 76
2.8 F Vehicles on a Crest and Dip . . . . . . . . . . . . . . . . 80
2.8.1 F Vehicles on a Crest . . . . . . . . . . . . . . . . . 81
2.8.2 F Vehicles on a Dip . . . . . . . . . . . . . . . . . . 86
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3 Tire Dynamics 99
3.1 Tire Coordinate Frame and Tire Force System . . . . . . . 99
3.2 Tire Stiness . . . . . . . . . . . . . . . . . . . . . . . . . . 103
vii
v
3.3 Eective Radius . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 F Tireprint Forces of a Static Tire . . . . . . . . . . . . . . 122
3.4.1 F Static Tire, Normal Stress . . . . . . . . . . . . . 123
3.4.2 F Static Tire, Tangential Stresses . . . . . . . . . . 126
3.5 Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . 128
3.5.1 Eect of Speed on the Rolling Friction Coe!cient . 131
3.5.2 Eect of In ation Pressure and Load on the Rolling
Friction Coe!cient . . . . . . . . . . . . . . . . . . . 135
3.5.3 F Eect of Sideslip Angle on Rolling Resistance . . 138
3.5.4 F Eect of Camber Angle on Rolling Resistance . . 138
3.6 Longitudinal Force . . . . . . . . . . . . . . . . . . . . . . . 139
3.7 Lateral Force . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.8 Camber Force . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.9 Tire Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.11 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4 Driveline Dynamics 179
4.1 Engine Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 179
4.2 Driveline and E!ciency . . . . . . . . . . . . . . . . . . . . 186
4.3 Gearbox and Clutch Dynamics . . . . . . . . . . . . . . . . 192
4.4 Gearbox Design . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.4.1 Geometric Ratio Gearbox Design . . . . . . . . . . . 201
4.4.2 F Progressive Ratio Gearbox Design . . . . . . . . . 215
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.6 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
II Vehicle Kinematics
5 F Applied Kinematics 233
5.1 Rotation About Global Cartesian Axes . . . . . . . . . . . . 233
5.2 Successive Rotation About Global Cartesian Axes . . . . . 238
5.3 Rotation About Local Cartesian Axes . . . . . . . . . . . . 239
5.4 Successive Rotation About Local Cartesian Axes . . . . . . 243
5.5 General Transformation . . . . . . . . . . . . . . . . . . . . 251
5.6 Local and Global Rotations . . . . . . . . . . . . . . . . . . 258
5.7 Axis-angle Rotation . . . . . . . . . . . . . . . . . . . . . . 259
5.8 Rigid Body Motion . . . . . . . . . . . . . . . . . . . . . . . 264
5.9 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . 267
5.10 F Time Derivative and Coordinate Frames . . . . . . . . . 275
5.11 Rigid Body Velocity . . . . . . . . . . . . . . . . . . . . . . 284
5.12 Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . 288
vi
231
Contents
5.13 Rigid Body Acceleration . . . . . . . . . . . . . . . . . . . . 293
5.14 F Screw Motion . . . . . . . . . . . . . . . . . . . . . . . . 296
5.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.16 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6 Applied Mechanisms 319
6.1 Four-Bar Linkage . . . . . . . . . . . . . . . . . . . . . . . . 319
6.2 Slider-Crank Mechanism . . . . . . . . . . . . . . . . . . . . 339
6.3 Inverted Slider-Crank Mechanism . . . . . . . . . . . . . . . 346
6.4 Instant Center of Rotation . . . . . . . . . . . . . . . . . . . 352
6.5 Coupler Point Curve . . . . . . . . . . . . . . . . . . . . . . 364
6.5.1 Coupler Point Curve for Four-Bar Linkages . . . . . 364
6.5.2 Coupler Point Curve for a Slider-Crank Mechanism . 366
6.5.3 Coupler Point Curve for Inverted Slider-Crank Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 370
6.6 F Universal Joint . . . . . . . . . . . . . . . . . . . . . . . 371
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7 Steering Dynamics 387
7.1 Kinematic Steering . . . . . . . . . . . . . . . . . . . . . . . 387
7.2 Vehicles with More Than Two Axles . . . . . . . . . . . . . 404
7.3 F Vehicle with Trailer . . . . . . . . . . . . . . . . . . . . . 407
7.4 Steering Mechanisms . . . . . . . . . . . . . . . . . . . . . . 411
7.5 F Four wheel steering. . . . . . . . . . . . . . . . . . . . . . 417
7.6 F Road Design . . . . . . . . . . . . . . . . . . . . . . . . . 434
7.7 F Steering Mechanism Optimization . . . . . . . . . . . . . 461
7.8 F Trailer-Truck Kinematics . . . . . . . . . . . . . . . . . . 469
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
7.10 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 484
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
8 Suspension Mechanisms 497
8.1 Solid Axle Suspension . . . . . . . . . . . . . . . . . . . . . 497
8.2 Independent Suspension . . . . . . . . . . . . . . . . . . . . 508
8.3 Roll Center and Roll Axis . . . . . . . . . . . . . . . . . . . 513
8.4 F Car Tire Relative Angles . . . . . . . . . . . . . . . . . . 524
8.4.1 F Toe . . . . . . . . . . . . . . . . . . . . . . . . . . 527
8.4.2 F Caster Angle . . . . . . . . . . . . . . . . . . . . . 529
8.4.3 F Camber . . . . . . . . . . . . . . . . . . . . . . . 530
8.4.4 F Thrust Angle . . . . . . . . . . . . . . . . . . . . 532
8.5 F Suspension Requirements and Coordinate Frames . . . . 533
8.5.1 Kinematic Requirements . . . . . . . . . . . . . . . . 533
Contents vii
8.5.2 Dynamic Requirements . . . . . . . . . . . . . . . . 534
8.5.3 Wheel, wheel-body, and tire Coordinate Frames . . . 534
8.6 F Caster Theory . . . . . . . . . . . . . . . . . . . . . . . . 544
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
8.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
III Vehicle Dynamics 567
9 F Applied Dynamics 569
9.1 Elements of Dynamics . . . . . . . . . . . . . . . . . . . . . 569
9.1.1 Force and Moment . . . . . . . . . . . . . . . . . . . 569
9.1.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . 570
9.1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 571
9.1.4 Equation of Motion . . . . . . . . . . . . . . . . . . 573
9.1.5 Work and Energy . . . . . . . . . . . . . . . . . . . . 573
9.2 Rigid Body Translational Dynamics . . . . . . . . . . . . . 579
9.3 Rigid Body Rotational Dynamics . . . . . . . . . . . . . . . 582
9.4 Mass Moment Matrix . . . . . . . . . . . . . . . . . . . . . 593
9.5 Lagrange’s Form of Newton’s Equations of Motion . . . . . 603
9.6 Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . 610
9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
9.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
10 Vehicle Planar Dynamics 631
10.1 Vehicle Coordinate Frame . . . . . . . . . . . . . . . . . . . 631
10.2 Rigid Vehicle Newton-Euler Dynamics . . . . . . . . . . . . 637
10.3 Force System Acting on a Rigid Vehicle . . . . . . . . . . . 644
10.3.1 Tire Force and Body Force Systems . . . . . . . . . 644
10.3.2 Tire Lateral Force . . . . . . . . . . . . . . . . . . . 648
10.3.3 Two-wheel Model and Body Force Components . . . 649
10.4 Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . . . 659
10.5 Steady-State Turning . . . . . . . . . . . . . . . . . . . . . . 670
10.6 F Linearized Model for a Two-Wheel Vehicle . . . . . . . . 695
10.7 F Transient Response . . . . . . . . . . . . . . . . . . . . . 699
10.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
10.9 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 729
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731
11 F Vehicle Roll Dynamics 741
11.1 F Vehicle Coordinate and DOF . . . . . . . . . . . . . . . . 741
11.2 F Equations of Motion . . . . . . . . . . . . . . . . . . . . 742
11.3 F Vehicle Force System . . . . . . . . . . . . . . . . . . . . 746
viii Contents
11.3.1 F Tire and Body Force Systems . . . . . . . . . . . 746
11.3.2 F Tire Lateral Force . . . . . . . . . . . . . . . . . . 749
11.3.3 F Body Force Components on a Two-wheel Model . 752
11.4 F Two-wheel Rigid Vehicle Dynamics . . . . . . . . . . . . 759
11.5 F Steady-State Motion . . . . . . . . . . . . . . . . . . . . 763
11.6 F Time Response . . . . . . . . . . . . . . . . . . . . . . . 767
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
11.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 783
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
IV Vehicle Vibration 795
12 Applied Vibrations 797
12.1 Mechanical Vibration Elements . . . . . . . . . . . . . . . . 797
12.2 Newton’s Method and Vibrations . . . . . . . . . . . . . . . 805
12.3 Frequency Response of Vibrating Systems . . . . . . . . . . 812
12.3.1 Forced Excitation . . . . . . . . . . . . . . . . . . . 813
12.3.2 Base Excitation . . . . . . . . . . . . . . . . . . . . . 823
12.3.3 Eccentric Excitation . . . . . . . . . . . . . . . . . . 835
12.3.4 F Eccentric Base Excitation . . . . . . . . . . . . . 841
12.3.5 F Classication for the Frequency Responses of OneDOF Forced Vibration Systems . . . . . . . . . . . . 847
12.4 Time Response of Vibrating Systems . . . . . . . . . . . . . 852
12.5 Vibration Application and Measurement . . . . . . . . . . . 864
12.6 F Vibration Optimization Theory . . . . . . . . . . . . . . 869
12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
12.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 882
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885
13 Vehicle Vibrations 891
13.1 Lagrange Method and Dissipation Function . . . . . . . . . 891
13.2 F Quadratures . . . . . . . . . . . . . . . . . . . . . . . . . 901
13.3 Natural Frequencies and Mode Shapes . . . . . . . . . . . . 908
13.4 Bicycle Car and Body Pitch Mode . . . . . . . . . . . . . . 915
13.5 Half Car and Body Roll Mode . . . . . . . . . . . . . . . . . 920
13.6 Full Car Vibrating Model . . . . . . . . . . . . . . . . . . . 925
13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
13.8 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 934
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
14 Suspension Optimization 939
14.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 939
14.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . 945
14.3 RMS Optimization . . . . . . . . . . . . . . . . . . . . . . . 949
Contents ix
14.4 F Time Response Optimization . . . . . . . . . . . . . . . . 972
14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
14.6 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 979
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
15 F Quarter Car Model 985
15.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 985
15.2 Frequency Response . . . . . . . . . . . . . . . . . . . . . . 987
15.3 F Natural and Invariant Frequencies . . . . . . . . . . . . . 994
15.4 F RMS Optimization . . . . . . . . . . . . . . . . . . . . 1006
15.5 F Optimization Based on Natural Frequency and Wheel
Travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016
15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
15.7 Key Symbols . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
References 1027
A Frequency Response Curves 1031
B Trigonometric Formulas 1037
C Unit Conversions 1041
Index 1045
x Contents
Dedicated to
my son, Kavosh,
my daughter, Vazan,
and my wife, Mojgan.
Nature is not perfect, not even optimum.