Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Ứng dụng dãy fibonacci trong toán sơ cấp.
Nội dung xem thử
Mô tả chi tiết
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC ĐÀ NẴNG
LÊ THỊ THANH HIỀN
ỨNG DỤNG DÃY FIBONACCI
TRONG TOÁN SƠ CẤP
Chuyên nghành: Phương pháp Toán sơ cấp
Mã số: 60.46.01.13
TÓM TẮT
LUẬN VĂN THẠC SĨ KHOA HỌC
Đà Nẵng – Năm 2015
Công trình được hoàn thành tại
ĐẠI HỌC ĐÀ NẴNG
Người hướng dẫn khoa học: PGS.TSKH. TRẦN QUỐC CHIẾN
Phản biện 1: TS Nguyễn Duy Thái Sơn.
Phản biện 2 : TS Trịnh Đào Chiến.
Luận văn sẽ được bảo vệ trước Hội đồng chấm luận văn tốt
nghiệp thạc sỹ Khoa học họp tại Đại học Đà Nẵng vào ngày 12
tháng 12 năm 2015
Có thể tìm hiểu luận văn tại:
-Trung tâm Thông tin – Học liệu, Đại học Đà Nẵng
-Trường Đại Học Sư Phạm, Đại Học Đà Nẵng
1
MỞ ĐẦU
1. Lí do chọn đề tài
Leonardo Pisano Bogollo (khoảng 1170 – 1250), còn đƣợc biết
với tên Leonardo của Pisa, hay phổ biến nhất dƣới cái tên Fibonacci,
là một nhà toán học ngƣời Ý và ông còn đƣợc một số ngƣời xem là
“nhà toán học tài ba nhất thời Trung Cổ”. Ông nổi tiếng trong thế
giới hiện đại vì có công lan truyền hệ đếm Hindu - Ả Rập ở Châu Âu
và đặc biệt là dãy số hiện đại mang tên ông, dãy Fibonacci trong
cuốn sách Liber Abaci – sách về toán đố năm 1202. Liber Abaci cũng
đề ra và giải quyết bài toán liên quan đến sự phát triển dân số của thỏ
dựa trên giả thiết lý tƣởng. Phép giải theo từng thế hệ là một chuỗi
các con số sau này đƣợc biết với tên dãy Fibonacci. Dãy số này đƣợc
các nhà toán học Ấn Độ biết đến từ thế kỷ thứ 6, nhƣng chỉ đến khi
cuốn Liber Abaci của Fibonacci ra đời, mới đƣợc giới thiệu đến
phƣơng Tây.
Dãy Fibonacci đƣợc coi là một dãy số kỳ diệu, nó xuất hiện
một cách tự nhiên ở hầu hết mọi sự vật, hiện tƣợng từ thiên nhiên đến
nhân tạo, chúng ta có thể bắt gặp sự hiện diện của nó ở thực vật cho
đến hệ động vật rất đẹp và đa dạng. Dãy Fibonacci và các tỉ lệ của nó
có vẻ rất lẻ và ngẫu nhiên, nhƣng kỳ lạ là nó đem lại sự cân bằng
hoàn hảo. Hơn nữa, ứng dụng của dãy Fibonacci trong toán học lại
rất phong phú. Vì vậy việc tìm hiểu sâu và giới thiệu dãy Fibonacci
và ứng dụng của nó trong toán sơ cấp là rất thú vị và cần thiết cho
học tập giảng dạy Toán, cũng nhƣ sự hiểu biết của con ngƣời.
2. Mục tiêu và nội dung nghiên cứu của đề tài
- Giới thiệu dãy Fibonacci, công thức tổng quát của dãy
Fibonacci.
- Giới thiệu các tính chất và các hệ thức của dãy Fibonacci.
- Trình bày ứng dụng dãy Fibonacci trong toán sơ cấp.
2
3. Đối tƣợng và phạm vi nghiên cứu
- Giới thiệu dãy Fibonacci.
- Ứng dụng dãy Fibonacci trong toán sơ cấp.
4. Phƣơng pháp nghiên cứu
- Thu thập tài liệu, đọc hiểu để trình bày một có hệ thống lý
thuyết và bài tập.
- Tham gia các buổi seminar với thầy hƣớng dẫn để hiểu rõ
hơn về nội dung đề tài nghiên cứu.
5. Đóng góp của đề tài
Làm rõ sự kỳ thú và chứng minh tính phong phú của dãy
Fibonacci trong các ứng dụng của nó, đặc biệt là trong toán sơ cấp.
6. Ý nghĩa khoa học và thực tiễn
Ý nghĩa khoa học
Góp phần làm sáng tỏ các định lý, tính chất của dãy Fibonacci
và ứng dụng dãy Fibonacci trong toán sơ cấp.
Ý nghĩa thực tiễn
Góp phần làm tài liệu tham khảo cho những ngƣời yêu thích dãy
Fibonacci và tìm hiểu về ứng dụng dãy Fibonacci trong toán sơ cấp.
7. Cấu trúc luận văn
Ngoài phần mở đầu và kết luận, nội dung của luận văn dự kiến
đƣợc chia thành ba chƣơng.
Chƣơng 1. Kiến thức cơ sở.
Chƣơng 2. Dãy Fibonacci và các tính chất.
Chƣơng 3. Ứng dụng của dãy Fibonacci trong toán sơ cấp.
3
CHƢƠNG 1
KIẾN THỨC CƠ SỞ
1.1. NGUYÊN LÝ QUY NẠP TOÁN HỌC
Giả sử rằng với mỗi số nguyên dƣơng n ta có mệnh đề logic
S n( )
. Ta chứng minh mệnh đề
S n( )
đúng nhƣ sau
a. Bƣớc cơ sở:
S(1)
đúng.
b. Bƣớc quy nạp:
n
, nếu
S n( )
đúng thì
S n( 1)
đúng.
Khi đó,
S n( )
đúng
n
.
1.2. DÃY SỐ
Định nghĩa 1.1. Một hàm số
un( )
xác định trên tập hợp các
số tự nhiên
,
đƣợc gọi là một dãy số vô hạn, mỗi giá trị của hàm số
un( )
gọi là một số hạng của dãy.
Ta thƣờng ký hiệu dãy
un( )
bởi
( ), un
ký hiệu các giá trị
u(0), u(1)
… tƣơng ứng bởi
0 u ,
1 u
… và
n u
là số hạng tổng quát của dãy.
Định nghĩa 1.2. Công thức truy hồi của dãy số
( )
n
s
là phƣơng
trình xác định
n
s
bằng các phần tử
0
s ,
1
s , …,
n 1
s
trƣớc nó:
0
( ,
n
s F s
1
s , …,
1
).
n
s
Điều kiện ban đầu là gán các giá trị cho một số hữu hạn các
phần tử đầu.
Định nghĩa 1.3. Công thức truy hồi tuyến tính bậc k có dạng
1 1 2 2 ( ) ( ) ... ( ) ( ), n n n k n k s c n s c n s c n s f n
( ) S
trong đó
( ) i
c n
với
i 1, …, k
và
f n( )
là các hàm theo n với
( ) 0, . k
c n n
Với công thức (S), công thức truy hồi sau
1 1 2 2 ( ) ( ) ... ( ) n n n k n k s c n s c n s c n s
0
( ) S
4
gọi là công thức truy hồi tuyến tính thuần nhất tƣơng ứng với
( ) S .
Nếu
( ) i
c n
với
i 1, …, k
là các hằng số
0, k
c
và thì
( ) S
gọi
là công thức truy hồi tuyến tính hệ số hằng bậc k và
0
( ) S
gọi là công
thức truy hồi tuyến tính thuần nhất hệ số hằng bậc k.
1.3. LÝ THUYẾT CHIA HẾT
Định nghĩa 1.4. Cho a, b là các số nguyên. Ta nói a chia hết b
(hay b chia hết cho a) nếu tồn tại số nguyên c sao cho
b ac
.
Nếu a
chia hết b, ta ký hiệu
a b|
hoặc
ba. Khi
a b| ,
ta nói a là ƣớc của b.
Định nghĩa 1.6. Ƣớc chung lớn nhất của hai số a và b không
đồng thời bằng 0 là số nguyên dƣơng lớn nhất chia hết cả a và b.
Ta dùng ký hiệu
( , ) ab
để chỉ ƣớc chung lớn nhất của a và b.
Định nghĩa 1.7. Các số nguyên a và b đƣợc gọi là nguyên tố
cùng nhau nếu
( , ) 1. a b
Thuật toán ơ-clit
Giả sử
0
r a
,
1
r b
là các số nguyên không âm và
b 0.
Ta thực hiện phép chia
0 1 1 2 r q r r ,
1 0 1 q r r , 2 1 0 , r r
dừng lại khi
2
r 0.
Nếu
2
r 0,
ta tiếp tục
1 2 2 3 r q r r ,
2 1 2 q r r , 3 2 0 , r r
dừng lại khi
3
r 0.
Nếu
3
r 0,
ta tiếp tục …
n n n 2 1 1 r q r , q r r n n n 1 2 1
, 0 n
r
với
n 2.
Khi đó,
1
( , ) . n a b r
5
1.4. LÝ THUYẾT ĐỒNG DƢ
Định nghĩa 1.8. Cho a và b là các số nguyên, m là số nguyên
dƣơng. Ta nói rằng a đồng dƣ b môđulô m nếu
m a b | ( ). Khi a
đồng dƣ b môđulô m, ta viết
a b m (mod ).
Định lý 1.4.3. (Định lý Ơ-le)
Cho m là số nguyên dương và a là số nguyên thỏa
( , ) 1. a m
Khi đó,
( ) 1(mod ), m
a m
trong đó
( ) m
là Phi-hàm Ơle.
Định lý 1.4.4. (Định lý Phecma bé )
Cho p nguyên tố và
a
với a không chia hết cho p. Khi đó,
1 1(mod ), p a p
1.5. HÀM SINH
Định nghĩa 1.9. Cho dãy số thực
( ) n a
và biến x. Hàm sinh
thƣờng của dãy
( ) n a
là hàm
2 3
0 1 2 3 g x a a x a x a x ( ) ...
Định nghĩa 1.10. Cho dãy số thực
( ) n a
và biến x. Hàm sinh
mũ của dãy
( )
n
a
là hàm
2 3
0 1 2 3 ( ) ...
1! 2! 3!
x x x
g x a a a a
1.6. TỔ HỢP
Định nghĩa 1.11. Với mỗi cặp
( , ) nk
các số nguyên mà,
0 , k n
ta định nghĩa
!
!( )!
k
n
n
C
k n k
và gọi
k Cn
là số tổ hợp chập
k của n.
6
1.7. TỈ LỆ VÀNG
Định nghĩa 1.12. Chia một đoạn thẳng thành hai phần sao cho
tỉ số giữa đoạn ban đầu với đoạn lớn hơn bằng tỉ số giữa đoạn lớn và
đoạn nhỏ. Tỉ số đó chính là tỉ lệ vàng.
Nếu độ dài đoạn lớn qui về đơn vị thì tỉ lệ vàng bằng nghịch đảo của
nghiệm dƣơng của phƣơng trình
1 1 . a a a
Giải phƣơng trình trên, ta đƣợc tỉ lệ vàng là
1 5 2 1.618033989
CHƢƠNG 2
DÃY FIBONACCI VÀ CÁC TÍNH CHẤT
2.1. ĐỊNH NGHĨA DÃY FIBONACCI
Bài toán mở đầu. Mỗi cặp thỏ mỗi tháng sinh một lần, cho
một cặp thỏ con. Cặp thỏ mới sinh ra sau hai tháng lại bắt đầu sinh
một cặp mới. Hỏi sau một năm sẽ có bao nhiêu cặp thỏ, nếu đầu năm
ta có một cặp thỏ?
Lời giải.
Nhƣ vậy từ giả thiết suy ra rằng, sau 1 tháng ta sẽ có 2 cặp thỏ, sau
hai tháng cặp thứ nhất sinh một cặp nữa ta có 3 cặp thỏ. Sau 3 tháng
cặp thứ 2 cũng sinh ra một cặp mới, vậy ta có 5 cặp thỏ. Ký hiệu
Fn
là số cặp thỏ có đƣợc sau tháng thứ n kể từ đầu năm, ta có sau tháng
thứ
n 1
thì sẽ có
Fn
cặp ban đầu, cộng thêm số cặp do các cặp đã có
sau tháng thứ
n 1
sinh ra, số này gọi là
Fn1
, do đó
1 1. F F F n n n
Theo giả thiết
0 F 1,
1 F 2 ,
2 F 3
từ đó ta tính đƣợc
F12
377.
Các số
Fn
trên đƣợc gọi là số Fibonacci.
7
Định nghĩa 2.1. Dãy Fibonacci là dãy số vô hạn các số tự
nhiên bắt đầu bởi số 0 và 1, kể từ số hạng thứ 3 trở đi, mỗi số hạng
của dãy đƣợc tính bằng tổng của hai số hạng đứng liền trƣớc nó.
Công thức truy hồi của dãy Fibonacci là
{
(2.1)
Định nghĩa 2.2. (dãy Lucas)
Dãy Lucas đƣợc định nghĩa là dãy
( ) L
n
mà các số hạng của dãy đƣợc
tính bởi hệ thức truy hồi sau
{
2.2. MỞ RỘNG DÃY SỐ FIBONACCI VỚI CHỈ SỐ ÂM
Với n là số nguyên dƣơng, ta có
1
( 1) . n F F n n
và
( 1) . n
L L n n
Hai công thức trên đƣợc chứng minh bằng phƣơng pháp quy nạp.
2.3. CÔNG THỨC TỔNG QUÁT CỦA DÃY FIBONACCI
Công thức của số hạng tổng quát của dãy Fibonacci là
, .
n n
F n n
(2.3)
Công thức của số hạng tổng quát của dãy Lucas là
, .
n n L n n
(2.4)
Định lý 2.3.1. Với mọi số nguyên dương n, ta có
1 1. L F F n n n
(2.5)
2.4. CÁC TÍNH CHẤT CỦA DÃY FIBONACCI
Với n và i là hai số nguyên dương, ta có
Định lý 2.4.1.
1 2 3 2 ... 1. F F F F F n n
(2.10)
8
Định lý 2.4.2.
1 3 5 2 1 2 ... . F F F F F n n
(2.11)
Hệ quả 2.4.1.
2 4 6 2 2 1 ... 1. F F F F F n n
(2.12)
Định lý 2.4.3.
1 1
1
1
( 1) ( 1) 1.
n
k n
k n
k
F F
(2.13)
Định lý 2.4.4.
2 2 2 2
1 2 3 1 ... . F F F F F F n n n
(2.16)
Định lý 2.4.5.
1
2
1
1
[1 ( 1) ]
2
k k
i i k
i
F F F
(2.17)
Định lý 2.4.9.
2
1 1 ( 1)n F F F n n n
(2.20)
Ví dụ 2.2. Cho n là số nguyên không âm, ta có
2 2 5 4( 1) . n F L n n (2.21)
Định lý 2.4.10. Cho m và n là hai số nguyên dương, ta có
1 1. F F F F F m n n m n m
(2.22)
Hệ quả 2.4.2. Cho
n ,
ta có
2 2
1 2 1. F F F n n n
(2.23)
Định lý 2.4.12. Cho n là số nguyên và
n 2,
khi đó
1
1
.
2
F F n n
Hệ quả 2.4.3.
1
lim . n
n
n
F
F
Nhận xét. Tỉ số của hai số liên tiếp nhau của dãy số Fibonacci
ngày càng tiến đến tỉ lệ vàng.