Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

The mechanical and thermodynamical theory of plasticity
Nội dung xem thử
Mô tả chi tiết
7230_cover.fhmx 3/23/12 8:33 AM Page 1
Composite
C M Y CM MY CY CMY K
The Mechanical and
Thermodynamical Theory
of Plasticity
Mehrdad Negahban
The Mechanical and
Thermodynamical Theory of Plasticity
Negahban
7230
www.crcpress.com
an informa business
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK www.crcpress.com
The Mechanical and Thermodynamical Theory of Plasticity
Born out of fifteen years of courses and lectures on continuum mechanics, nonlinear mechanics,
continuum thermodynamics, viscoelasticity, plasticity, crystal plasticity and thermodynamic plasticity,
The Mechanical and Thermodynamical Theory of Plasticity represents one of the most
extensive and in-depth treatises on the mechanical and thermodynamical aspects of plastic and
visicoplastic flow. Suitable for student readers and experts alike, it offers a clear and comprehensive
presentation of multi-dimensional continuum thermodynamics to both aid in initial understanding
and introduce and explore advanced topics.
Features:
•Includes more than 200 figures and an extensive number of exercises and
computer simulation problems
•Reviews background mathematics, continuum thermodynamics, and the extension of bars,
to provide a broad perspective for student readers
•Offers a look at special advanced topics, including infinitesimal theory and solutions;
the finite deformation theories; and the common perspective that connects them
•Explores the common perspectives and similarities of the mechanical and thermodynamical
theories, with extensive use of analogs to help connect the ideas
•Connects the first gradient theory to elasticity, plasticity, visicoelasticity, visicoplasticity,
and crystal plasticity
•Demonstrates extensive use of the representation theory to provide tools for
constructing complex models
Covering a wide range of foundational subjects and presenting unique insights into the unification
of disparate theories and practices, this book offers an extensive number of problems, figures,
and examples to help the reader grasp the subject from many levels. Starting from one-dimensional
axial motion in bars, the book builds a clear understanding of mechanics and continuum
thermodynamics during plastic flow. This approach makes it accessible and applicable for a varied
audience, including students and experts from Engineering Mechanics, Mechanical Engineering,
Civil Engineering, and Materials Science.
CIVIL AND MECHANICAL ENGINEERING
The Mechanical and
Thermodynamical Theory
of Plasticity
7230_FM.indd 1 3/27/12 2:18 PM
This page intentionally left blank
The Mechanical and
Thermodynamical Theory
of Plasticity
Mehrdad Negahban
CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
7230_FM.indd 3 3/27/12 2:18 PM
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20120419
International Standard Book Number-13: 978-1-4665-6321-6 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
With Love
To my parents
Meriam and Ezat
for letting me become what I wanted to be and for helping me in this process
To my wife
Setareh
for reminding me that some will never understand
To my children
Arman and Shahdi
for the strength you give me
and
with the hope that
you each find what you want to become
you reach to achieve it
and
you enjoy the process
This page intentionally left blank
Acknowledgments
The author would like to acknowledge the help of many people who provided insight,
sometimes unknowingly, and people who helped in the preparation of this book. These
include colleagues and students. Many of the students taking my classes pointed out corrections and provided suggestions, which was very much appreciated. Particular thanks go
to Ashwani Kumar Goel, Lili Zhang, Kyle Strabala, Benjamin Polly, and Saeed Eghtedar
Doust, who each read part or all of the text and provided corrections and comments, and
Yenan Wang for doing the steel and aluminum tests. I owe a particular debt of gratitude
to Ashwani Kumar Goel, who did most of the simulations, and Lili Zhang, who carefully read and checked all the equations and representations; they were true partners in this
endeavor.
This page intentionally left blank
ix
Contents
Preface xix
1 Plasticity in the 1-D bar 1
1.1 Introduction to plastic response . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The bar and the continuum assumption . . . . . . . . . . . . . . . . . . . . 2
1.3 Motion and temperature of points on a bar . . . . . . . . . . . . . . . . . . 4
1.4 Stretch ratio, strain, velocity gradient, temperature gradient . . . . . . . . . 9
1.5 Superposition of deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Elastic, plastic, and thermal strains . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Examples of constitutive models . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7.1 Elastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7.2 Thermoelastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.3 Viscous fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.4 Elastic-plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7.5 Fourier’s law for heat conduction . . . . . . . . . . . . . . . . . . . . 20
1.8 Mechanical theory of rate-independent plasticity . . . . . . . . . . . . . . . 21
1.9 Mechanical models for plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9.1 Elastic perfectly plastic . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9.2 Elastic-plastic with isotropic hardening: strain hardening . . . . . . . 26
1.9.3 Elastic-plastic with isotropic hardening: work hardening . . . . . . . 28
1.9.4 Elastic-plastic with kinematic hardening . . . . . . . . . . . . . . . . 29
1.9.5 Elastic-plastic with arbitrary hardening . . . . . . . . . . . . . . . . 31
1.9.6 Elastic-plastic with combined isotropic and kinematic hardening . . 34
1.9.7 Isotropic hardening with changing elastic modulus . . . . . . . . . . 36
1.10 Temperature-dependent plasticity . . . . . . . . . . . . . . . . . . . . . . . . 40
1.11 An infinitesimal theory of thermoplasticity . . . . . . . . . . . . . . . . . . . 44
1.12 Rate-dependent models for plasticity . . . . . . . . . . . . . . . . . . . . . . 49
1.13 Load control as opposed to strain control . . . . . . . . . . . . . . . . . . . . 54
1.14 Numerical integration of constitutive equations . . . . . . . . . . . . . . . . 56
1.14.1 Rate-independent and temperature-independent plasticity . . . . . . 56
1.14.2 Rate-independent and temperature-dependent plasticity . . . . . . . 63
1.14.3 Load control as opposed to strain control . . . . . . . . . . . . . . . 65
1.14.4 Rate-dependent plasticity . . . . . . . . . . . . . . . . . . . . . . . . 66
1.15 The balance laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.15.1 Calculating physical properties from their distributions . . . . . . . . 68
1.15.2 The material time derivative of physical properties . . . . . . . . . . 69
1.15.3 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.15.4 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . 73
1.15.5 Balance of work and energy . . . . . . . . . . . . . . . . . . . . . . . 74
1.15.6 The entropy production inequality . . . . . . . . . . . . . . . . . . . 75
1.16 Thermodynamic restrictions on constitutive equations . . . . . . . . . . . . 77
1.16.1 Thermoelasticity using (, θ, g) . . . . . . . . . . . . . . . . . . . . . . 78
1.16.2 Thermoelasticity using (
e
, θ
, θ, g) . . . . . . . . . . . . . . . . . . . . 79
1.16.3 Thermoplasticity using (, p
, θ
, ξ, θ, g) . . . . . . . . . . . . . . . . . 81
1.16.4 Thermoplasticity using (
e
, p
, θ
, ξ, θ, g) . . . . . . . . . . . . . . . . . 83
1.16.5 Rate-dependent thermoplasticity . . . . . . . . . . . . . . . . . . . . 86
1.17 Heat generation and flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.18 Equilibrium and quasi-equilibrium problems . . . . . . . . . . . . . . . . . . 90
1.18.1 Elastic bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
1.18.2 Elastic-plastic bar with isotropic hardening . . . . . . . . . . . . . . 93
1.18.3 Elastic-viscoplastic bar . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1.19 Dynamic loading problems: Numerical solution . . . . . . . . . . . . . . . . 95
1.20 Dealing with discontinuities: Jump conditions . . . . . . . . . . . . . . . . . 104
1.21 Plastic drawing of bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.22 Elastic and plastic (shock) waves in a bar . . . . . . . . . . . . . . . . . . . 109
1.23 General comment on selection of moduli . . . . . . . . . . . . . . . . . . . . . 112
1.24 Notation and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Vectors and tensors 117
2.1 Matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.1.1 Indicial notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.1.2 Basic matrix operations . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.1.3 The eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.1.4 Cayley-Hamilton theorem . . . . . . . . . . . . . . . . . . . . . . . . 128
2.1.5 Polar decomposition theorem . . . . . . . . . . . . . . . . . . . . . . 129
2.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.2.1 Frames and coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.2.2 Vectors and basic vector operations . . . . . . . . . . . . . . . . . . . 131
2.2.3 Base vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.2.4 Change of base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
2.2.5 Curvilinear coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.3.1 Extracting components of a tensor . . . . . . . . . . . . . . . . . . . . 147
2.3.2 The eigenvalue problem for tensors . . . . . . . . . . . . . . . . . . . 149
2.3.3 Length of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.4 Tensor calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.4.1 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.4.2 Divergence and Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 154
2.4.3 Curl and circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.4.4 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
2.4.5 Time derivatives and partial derivatives . . . . . . . . . . . . . . . . . 165
2.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3 Describing motion, deformation, and temperature 169
3.1 Position, velocity, acceleration, and temperature . . . . . . . . . . . . . . . . 169
3.2 Configurations of material bodies . . . . . . . . . . . . . . . . . . . . . . . . 169
3.3 Streamlines and pathlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.4 Deformation gradient and temperature gradient . . . . . . . . . . . . . . . . 175
3.5 Stretch and strain tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3.6 Velocity gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.7 Relative deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.8 Triaxial extension, simple shear, bending, and torsion . . . . . . . . . . . . . 188
3.9 Small deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Contents xi
3.9.1 Small stretch and small rigid body rotation . . . . . . . . . . . . . . 196
3.9.2 Small stretch and large rigid body rotation . . . . . . . . . . . . . . 197
3.10 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4 Elastic, plastic, and thermal deformation 201
4.1 Elastic and plastic deformation gradients . . . . . . . . . . . . . . . . . . . . 201
4.2 Elastic and plastic strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.3 Elastic and plastic velocity gradients . . . . . . . . . . . . . . . . . . . . . . 204
4.4 Infinitesimal elastic and plastic deformations . . . . . . . . . . . . . . . . . . 208
4.5 Large rigid body rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.5.1 Small elastic and plastic strain . . . . . . . . . . . . . . . . . . . . . 211
4.5.2 Small elastic strain and moderate plastic strain . . . . . . . . . . . . 211
4.6 Thermal deformation and thermal strain . . . . . . . . . . . . . . . . . . . . 212
4.7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5 Traction, stress, and heat flux 217
5.1 The traction vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.2 The relation between tractions on different surfaces . . . . . . . . . . . . . . 220
5.3 The stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.4 Isotropic invariants and the deviatoric stress . . . . . . . . . . . . . . . . . . 224
5.5 Examples of elementary states of stress . . . . . . . . . . . . . . . . . . . . . 226
5.6 True stress as opposed to engineering stress . . . . . . . . . . . . . . . . . . 229
5.7 The Piola-Kirchhoff, rotated, and convected stresses . . . . . . . . . . . . . 233
5.8 Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.9 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6 Balance laws and jump conditions 239
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.2 Transport relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.3 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.5 Balance of angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.6 Balance of work and energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
6.7 Entropy and the entropy production inequality . . . . . . . . . . . . . . . . 258
6.8 Heat flow and thermodynamic processes . . . . . . . . . . . . . . . . . . . . . 260
6.9 Infinitesimal deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.10 The generalized balance law . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.11 Jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.11.1 Divergence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.11.2 Transport theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.11.3 The jump conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.12 Perturbing a motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
6.13 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.14 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7 Infinitesimal plasticity 285
7.1 A mechanical analog for plasticity . . . . . . . . . . . . . . . . . . . . . . . . 285
7.2 Elastic perfectly plastic response . . . . . . . . . . . . . . . . . . . . . . . . . 290
7.3 Common assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.3.1 Linear elastic response . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.3.2 Yield function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
7.3.3 Hardening parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
xii The Mechanical and Thermodynamical Theory of Plasticity
7.3.4 Flow rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7.3.5 Dissipation for a mechanical model . . . . . . . . . . . . . . . . . . . 303
7.4 Von Mises yield function with combined isotropic and kinematic hardening . 304
7.4.1 Simple shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
7.5 Thermoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.5.1 Thermal expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.5.2 Temperature-dependent mechanical theory . . . . . . . . . . . . . . . 309
7.5.3 Thermodynamical model . . . . . . . . . . . . . . . . . . . . . . . . . 310
7.5.4 Balance of work and energy . . . . . . . . . . . . . . . . . . . . . . . 312
7.5.5 Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7.6 Free energy of quadratic form . . . . . . . . . . . . . . . . . . . . . . . . . . 314
7.6.1 Thermodynamic constraint . . . . . . . . . . . . . . . . . . . . . . . . 315
7.6.2 Balance of work and energy . . . . . . . . . . . . . . . . . . . . . . . 316
7.6.3 Flow rule, hardening rule, and yield function . . . . . . . . . . . . . . 317
7.7 Scalar stress and hardening functions . . . . . . . . . . . . . . . . . . . . . . 319
7.8 Multiple elements in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.8.1 A model made of perfectly plastic elements . . . . . . . . . . . . . . . 333
7.9 Multiple elements in series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
7.9.1 A model made of a finite number of plastic elements . . . . . . . . . . 337
7.10 Rate-dependent plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.11 Deformation plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
7.12 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
8 Solutions for infinitesimal plasticity 345
8.0.1 Simulation of response . . . . . . . . . . . . . . . . . . . . . . . . . . 348
8.1 Homogeneous deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
8.1.1 Equal triaxial stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8.1.2 Pure shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
8.1.3 Uniaxial tension/compression . . . . . . . . . . . . . . . . . . . . . . . 350
8.1.4 Equal biaxial extension . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.2 Torsion-extension of a thin circular cylindrical tube . . . . . . . . . . . . . . 355
8.3 Compression in plane strain . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.3.1 During elastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
8.3.2 During plastic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
8.4 Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
8.4.1 Elastic bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
8.4.2 Plastic bending under a single monotonic moment . . . . . . . . . . . 366
8.5 Torsion of circular members . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
8.5.1 Elastic torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
8.5.2 Elastic-plastic torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
8.6 Unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
8.7 Torsion of prismatic sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
8.7.1 Elastic torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
8.7.2 Perfect plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
8.8 Nonuniform loading of bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
8.8.1 Equilibrium problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
8.8.2 Assuming small rotational inertia in bending . . . . . . . . . . . . . . 390
8.8.3 Statically determinate problems . . . . . . . . . . . . . . . . . . . . . 390
8.8.4 Rotating beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
8.9 Cylindrical and spherical symmetry . . . . . . . . . . . . . . . . . . . . . . . 394
8.9.1 Antiplane shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
8.9.2 Internal pressure under plane strain . . . . . . . . . . . . . . . . . . . 402
Contents xiii
8.9.3 Other problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
8.10 Two-dimensional problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
8.10.1 Plane-stress problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
8.10.2 Plane-strain problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
8.11 Heat and its generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
9 First-gradient thermomechanical materials 411
9.1 First-gradient theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.2 Superposition of pure translations . . . . . . . . . . . . . . . . . . . . . . . . 412
9.3 Superposition of rigid body rotations . . . . . . . . . . . . . . . . . . . . . . 413
9.4 Material symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
9.5 First-gradient state variable models . . . . . . . . . . . . . . . . . . . . . . . 420
9.6 Higher-gradient and nonlocal models . . . . . . . . . . . . . . . . . . . . . . 422
9.7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
10 Elastic and thermoelastic solids 425
10.1 The thermoelastic solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
10.2 The influence of pure rigid body translation on the constitutive response . . 428
10.3 The influence of pure rigid body rotation on the constitutive response . . . 429
10.4 Material symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
10.4.1 Isotropic elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . 436
10.4.2 Transversely isotropic elastic materials . . . . . . . . . . . . . . . . . 439
10.4.3 Orthotropic elastic materials . . . . . . . . . . . . . . . . . . . . . . . 441
10.5 Change of reference configuration . . . . . . . . . . . . . . . . . . . . . . . . 442
10.6 A thermodynamically consistent model . . . . . . . . . . . . . . . . . . . . . 444
10.6.1 Isotropic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
10.6.2 Isotropic rubber-elasticity-based model . . . . . . . . . . . . . . . . . 450
10.6.3 Isotropic Ogden type models . . . . . . . . . . . . . . . . . . . . . . . 453
10.7 Models based on F
e and F
θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
10.7.1 Models depending on (F
e
, θ, g) . . . . . . . . . . . . . . . . . . . . . . 460
10.8 Specific free energy of quadratic form in strain . . . . . . . . . . . . . . . . . 466
10.8.1 Models based on Ee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
10.8.2 Infinitesimal strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
10.9 Heat generation and heat capacity . . . . . . . . . . . . . . . . . . . . . . . . 473
10.10 Material constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
10.11 Multiple material constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 480
10.12 Superposition of deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 483
10.12.1Wave propagation in preloaded bodies . . . . . . . . . . . . . . . . . 486
10.13 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
11 Finite deformation mechanical theory of plasticity 493
11.1 General mechanical theory of plasticity . . . . . . . . . . . . . . . . . . . . . 494
11.1.1 Consistency condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
11.2 Rigid body motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
11.3 Material symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
11.4 Stress depending only on elastic deformation gradient . . . . . . . . . . . . . 505
11.4.1 Initially isotropic materials . . . . . . . . . . . . . . . . . . . . . . . 506
11.5 Stress depending on both elastic deformation and plastic strain . . . . . . . . 507
11.6 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
11.7 Deformation plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
11.8 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
xiv The Mechanical and Thermodynamical Theory of Plasticity
12 Thermoplastic solids 513
12.1 A simple thermomechanical analog . . . . . . . . . . . . . . . . . . . . . . . . 513
12.2 Thermoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
12.3 Thermodynamic constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
12.3.1 Thermal deformation gradient . . . . . . . . . . . . . . . . . . . . . . 518
12.3.2 Thermoelastic range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
12.3.3 Flow rule and hardening parameter . . . . . . . . . . . . . . . . . . . 520
12.4 Isotropic examples with J2 type yield functions . . . . . . . . . . . . . . . . . 522
12.4.1 Perfectly plastic material . . . . . . . . . . . . . . . . . . . . . . . . . 522
12.4.2 Isotropic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
12.4.3 Kinematic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
12.4.4 Combined isotropic and kinematic hardening . . . . . . . . . . . . . . 531
12.5 Superposition of rigid body motions . . . . . . . . . . . . . . . . . . . . . . . 535
12.6 Material symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
12.7 An initially isotropic material . . . . . . . . . . . . . . . . . . . . . . . . . . 541
12.8 Models depending on Cp
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
12.8.1 Isotropic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
12.9 Heat generation and heat flow . . . . . . . . . . . . . . . . . . . . . . . . . . 548
12.10 Specific free energy of quadratic form in strain . . . . . . . . . . . . . . . . . 550
12.10.1 Small strain approximation . . . . . . . . . . . . . . . . . . . . . . . . 552
12.11 Plasticity models based on Green strains . . . . . . . . . . . . . . . . . . . . 553
12.11.1Models using elastic and plastic Green strains . . . . . . . . . . . . . 554
12.11.2 Separable free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
12.12 Heat flux vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
12.13 Material constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
12.14 Models based on F = F
eF
θF
p
. . . . . . . . . . . . . . . . . . . . . . . . . . 563
12.15 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
13 Viscoelastic solids 567
13.1 One-dimensional linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . . 567
13.1.1 Standard linear solid . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
13.1.2 General linear viscoelastic material . . . . . . . . . . . . . . . . . . . 575
13.2 One-dimensional nonlinear viscoelasticity . . . . . . . . . . . . . . . . . . . . 580
13.2.1 A standard quasi-nonlinear viscoelastic solid . . . . . . . . . . . . . . 580
13.2.2 A standard nonlinear viscoelastic solid . . . . . . . . . . . . . . . . . 585
13.2.3 Generalization to multiple elements . . . . . . . . . . . . . . . . . . . 588
13.3 Three-dimensional linear viscoelasticity . . . . . . . . . . . . . . . . . . . . . 590
13.3.1 Standard linear solid . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
13.3.2 General linear viscoelastic model . . . . . . . . . . . . . . . . . . . . . 592
13.4 A one-element thermoviscoelastic model . . . . . . . . . . . . . . . . . . . . . 594
13.4.1 One-dimensional model . . . . . . . . . . . . . . . . . . . . . . . . . . 594
13.4.2 A one-element three-dimensional thermodynamically consistent model 595
13.4.3 Rigid body motions and the symmetry of the Cauchy stress . . . . . 597
13.4.4 Material symmetry constraints . . . . . . . . . . . . . . . . . . . . . . 600
13.4.5 Free energies of quadratic form in Green strains . . . . . . . . . . . . 602
13.4.6 Linear flow rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
13.4.7 Infinitesimal strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
13.4.8 An example model with quadratic free energy . . . . . . . . . . . . . 605
13.4.9 An isotropic coupled elastic-viscoelastic free energy . . . . . . . . . . 609
13.4.10 An example model motivated by rubber elasticity . . . . . . . . . . . 612
13.5 Multielement thermodynamic viscoelastic model . . . . . . . . . . . . . . . . 618
13.5.1 Rigid body motions and the symmetry of the Cauchy stress . . . . . 620