Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

The local field dependent effect of the critical distance of energy transfer between nanoparticles
MIỄN PHÍ
Số trang
7
Kích thước
4.5 MB
Định dạng
PDF
Lượt xem
824

The local field dependent effect of the critical distance of energy transfer between nanoparticles

Nội dung xem thử

Mô tả chi tiết

Optics Communications 353 (2015) 49-55

ELSEVIER

C ontents lists available at SeiénçeDirect

Optics Communications

jo u rn a l hom epage: w w w .else vie r.co m /locate /o ptcom

The local field dependent effect of the critical distance of energy iujcrossivfa

transfer between nanoparticles

:hu Viet H aa'b, Do Thi N gaa, Nguyen Ai V iet3, Tran Hong N hung3’*

Institute of Physics, Vietnam Academy o f Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam

Thai Nguyen University of Education, Thai Nguyen, Viet Nam

\RTICLE INFO S T R A c T

article history:

leceived 4 February 2015

:eceived in revised form

April 2015

.ccepted 7 May 2015

available online 8 May 2015

eywords:

orster resonance energy transfer

'ye molecules

luorescent nanoparticles

old nanoparticles

realized plasmon coupled surface energy

ansfer

ritical transfer distance

T he fluorescence re so n an ce en erg y tra n sfe r b e tw e e n v arious ty p e s o f flu o ro p h o re pairs w as in v estig ate

Dye m olecules, q u a n tu m dots, flu o rescen t n an o p artic les (dye m o lecu les e n c a p su la ted in p o ly m e r m

trices) w e re u sed as d o n o r D. Dye m olecules a n d gold n a n o p artic les w e re u sed as a cc e p to r A. W e four

th a t th e ex p erim e n tal Forster critical tra n sfe r d ista n ce R0 is 1 -1 0 n m w h e n b o th D an d A a re dye mi

Iecules, a n d beco m es la rg e r th a n 10 n m w h e n th e d o n o r is flu o resc en t n a n o p articles. W h en th e accepto

A a re gold nan o p articles, th e case is c o n sid ered as localized p lasm o n coupled n an o su rface e n erj

tra n s fe r (NSET), th e ex p erim e n tal critical d istan ce d 0 increases u p to few te n n a n o m e te rs w h e n D a re dj

m olecules o r q u a n tu m dots. For th e first tim e, u n -e x p e c te d g ia n t re so n an c e en erg y tra n s fe r (G-RE￾p h e n o m e n o n is observed in o u r e x p erim e n ts w ith v e ry large critical tra n sfe r d istan ce d 0, w h ic h increasi

from few te n n a n o m e ters to m ic ro m e te rs w h e n th e d o n o rs a re flu o resc en t a n d th e a ccep to rs are goi

n an o p articles. A m odel “n anow ave e m itte r statio n a n d a n te n n a " is given to e xplain th e local field d<

p e n d en c e of th e critical distance of en erg y tra n s fe r b e tw e e n th o se n a n o p articles. M oreover, a sim p

th e o re tic al m odel w ith s iz e -n u m b e r c o n trib u tio n (for flu o resc en t n a n o p artic les) a n d surface plasm o

coupled e n h a n c e m e n t effect (for gold n an o p artic les) is p ro p o se d to explain th e se o b ta in e d e x p e rim e n t

results.

© 2015 Elsevier B.V. All rig h ts reservei

. Introduction

Fluorescence or Forster resonance energy tran sfer (FRET) has

een w idely used in biology and chem istry for m easuring the

¡stance r betw een tw o fluorophores to d etect m olecular inter￾ctions in a n u m b er of system s, th an k s to th eir d istance-depen￾en t d ipole-dipole interaction m echanism . FRET can be used as

Dectroscopic ru ler in various areas such as th e interaction of

iological m olecules in vitro and in vivo assays in cellular research,

ucleic acid analysis, signal transduction, light harvesting and

letallic nanom aterial etc. Based on th e m echanism of FRET a

iriety of novel chem ical sensors and biosensors have been de-

;loped [1-5]. Conventional FRET exhibits th e R~6 dependence

w of energy transfer rate and characterized by th e Forster dis￾ince or critical distance R0, w hich defined as th e distance at

'hich th e energy transfer efficiency is 50%. The R0 is given by

3 = 0.211 p n - V a / W ) ] 1'6 (1)

w here <f)D is the fluorescence q u an tu m yield of th e donor (D) in th

absence of th e acceptor (A), k2 is the dipole orientation factor, n i

th e refractive index o f th e m edium , and J{,t) is th e spectral overla

integral, /c2 = 2/3 for isotropically oriented dipoles [6]. The FRE

suffers from a lim ited length scale of approxim ately 10 nm . On th

o th er hand, th ere are m any w orks d em o n strated th e non-Forste

distance depen d en ce o f energy transfer. Bagchi et al. show ed th

R~2 depen d en ce rule for electronic excitation tran sfer (EET) from

seg m en t of polyfluorene to tetraphenylporphyrin. The Forste

expression seem s to be in ap p ro p riate for th e condensed-phas

system s w h ere donors and acceptors can be closely packed [7

The Forster energy tran sfer is also breaking dow n w h en th e energ;

transfer occurs from a dye m olecule to a n anom etal surface, whicl

w as attrib u ted to th e surface energy tran sfer (SET) and follows R~

distance dependence. This p h en o m en o n w as explained by thi

surface plasm on coupled nonradiative energy tran sfer [8,9]. En

ergy transfer betw een dye m olecules or q u an tu m dots (QDs) -

donors and m etallic nanoparticles (MNPs) - acceptors dem on

strates a longer range energy tran sfer p h en om enon due to th<

* Corresponding author.

E-mail address: [email protected] (T. Hong Nhung).

tp://dx.doi.oi‘g/10.l0l6/j.optcom.2015.05.015

)30-40181© 2015 Elsevier B.V. All rights reserved.

Tải ngay đi em, còn do dự, trời tối mất!