Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
The character formula of irreducible representations of gl(2/1)
Nội dung xem thử
Mô tả chi tiết
THE CHARACTER FORMULA OF IRREDUCIBLE REPRESENTATIONS OF gl(2|1)
Nguyen Thi Phuong Dung
Banking Academy
Tãm t¾t
Cho V lµ siªu kh«ng gian víi siªu chiÒu (m|n). Khi ®ã, ta cã siªu nhãm tuyÕn tÝnh tæng qu¸t GL(m|n).
Trong trêng hîp m = 0 hoÆc n = 0, c¸c biÓu diÔn bÊt kh¶ qui cña siªu nhãm nµy ®· hoµn toµn ®îc x©y
dùng. Theo Schur and Weyl, ta cã c«ng thøc tÝnh ®Æc trng cho c¸c biÔu diÔn bÊt kh¶ qui nh lµ ®Þnh thøc cña
c¸c tensor ®èi xøng Si
. Trong trêng hîp c¶ m vµ n ®Òu kh¸c 0, ®iÒu nµy cha ®îc chøng minh. Trong bµi
b¸o nµy chóng t«i ®a ra ®îc c«ng thøc t¬ng tù cho trêng hîp m = 2 vµ n = 1.
Tõ kho¸: Nhãm tuyÕn tÝnh, c«ng thøc ®Æc trung, Verma module, biÓu diÔn ®iÓn h×nh, biÓu diÔn kh«ng
®iÓn h×nh.
1 Introduction
Let V be a super vector space over a field k of characteristic of 0. The super group GL(V ) of linear
automorphisms of V is the subgroup of the semi-group End(V ) of endomorphisms with invertible superdeterminant. In [12] Manin introduced the following Koszul complex K to define the super determinat.
Its (k, l)-term is given by Kk,l := Λk ⊗S
∗
l
, where Λn and Sn are the n-th homogeneous components of
the exterior and the symmetric tensor algebra on V . The differential dk,l : Kk,l −→ Kk+1,l+1 is given
by
dk,l(h ⊗ ϕ) = X
i
h ∧ xi ⊗ ξ
i
· ϕ
where Xl
, Yk are the symetrizer and anti-symmetrizer operators.
In the case n = 0, m 6= 0, irreducible representations of G have classified and indexed by partitions
(λ1, λ2, · · · , λm) : λi ≥ λi+1, λi ∈ Z. Particular, the character of all irreducible representations of G
are given by the determinant of Si
.
In [15], by using the Koszul complexes, we constructed all irreducible representations of GL(2|1).
In [9], Kac proved that any finite dimensional irreducible representations of Lie super algebra gl(V ) is a
Verma module. He divided irreducible representations of gl(V ) into two classes, typical representations
and atypical representations. By using Verma module, Kac gave explicit construction of all typical
representation of gl(V ). A character formula for all typical representation was also obtained. In [15] Su
and Zhang gave a character formula for all finite-dimensional irreducible representations of gl(V ). The
formula character of irreducible representations by using determinant of Si
is however not known.
The aim of this work is to give a formulla character using by determinant of all irreducible representations
in case the super-dimension of V is (2|1).
1
*Tel: 0976605305, e-mail: [email protected]
151Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn