Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

The character formula of irreducible representations of gl(2/1)
MIỄN PHÍ
Số trang
5
Kích thước
311.3 KB
Định dạng
PDF
Lượt xem
1444

Tài liệu đang bị lỗi

File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.

The character formula of irreducible representations of gl(2/1)

Nội dung xem thử

Mô tả chi tiết

THE CHARACTER FORMULA OF IRREDUCIBLE REPRESENTATIONS OF gl(2|1)

Nguyen Thi Phuong Dung

Banking Academy

Tãm t¾t

Cho V lµ siªu kh«ng gian víi siªu chiÒu (m|n). Khi ®ã, ta cã siªu nhãm tuyÕn tÝnh tæng qu¸t GL(m|n).

Trong tr­êng hîp m = 0 hoÆc n = 0, c¸c biÓu diÔn bÊt kh¶ qui cña siªu nhãm nµy ®· hoµn toµn ®­îc x©y

dùng. Theo Schur and Weyl, ta cã c«ng thøc tÝnh ®Æc tr­ng cho c¸c biÔu diÔn bÊt kh¶ qui nh­ lµ ®Þnh thøc cña

c¸c tensor ®èi xøng Si

. Trong tr­êng hîp c¶ m vµ n ®Òu kh¸c 0, ®iÒu nµy ch­a ®­îc chøng minh. Trong bµi

b¸o nµy chóng t«i ®­a ra ®­îc c«ng thøc t­¬ng tù cho tr­êng hîp m = 2 vµ n = 1.

Tõ kho¸: Nhãm tuyÕn tÝnh, c«ng thøc ®Æc trung, Verma module, biÓu diÔn ®iÓn h×nh, biÓu diÔn kh«ng

®iÓn h×nh.

1 Introduction

Let V be a super vector space over a field k of characteristic of 0. The super group GL(V ) of linear

automorphisms of V is the subgroup of the semi-group End(V ) of endomorphisms with invertible super￾determinant. In [12] Manin introduced the following Koszul complex K to define the super determinat.

Its (k, l)-term is given by Kk,l := Λk ⊗S

l

, where Λn and Sn are the n-th homogeneous components of

the exterior and the symmetric tensor algebra on V . The differential dk,l : Kk,l −→ Kk+1,l+1 is given

by

dk,l(h ⊗ ϕ) = X

i

h ∧ xi ⊗ ξ

i

· ϕ

where Xl

, Yk are the symetrizer and anti-symmetrizer operators.

In the case n = 0, m 6= 0, irreducible representations of G have classified and indexed by partitions

(λ1, λ2, · · · , λm) : λi ≥ λi+1, λi ∈ Z. Particular, the character of all irreducible representations of G

are given by the determinant of Si

.

In [15], by using the Koszul complexes, we constructed all irreducible representations of GL(2|1).

In [9], Kac proved that any finite dimensional irreducible representations of Lie super algebra gl(V ) is a

Verma module. He divided irreducible representations of gl(V ) into two classes, typical representations

and atypical representations. By using Verma module, Kac gave explicit construction of all typical

representation of gl(V ). A character formula for all typical representation was also obtained. In [15] Su

and Zhang gave a character formula for all finite-dimensional irreducible representations of gl(V ). The

formula character of irreducible representations by using determinant of Si

is however not known.

The aim of this work is to give a formulla character using by determinant of all irreducible representations

in case the super-dimension of V is (2|1).

1

*Tel: 0976605305, e-mail: [email protected]

151Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Tải ngay đi em, còn do dự, trời tối mất!