Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

The Biological Sample Classification Using Gene Expression Data
Nội dung xem thử
Mô tả chi tiết
Dedicated to my family
Acknowledgements
I would like to send my faithfull and deepest gratitude to my supervisor,
Asso. Prof. Ha Quang Thuy who is always behind me and give me
valuable encouragement, advices not only in my research activities but
also in daily life. This thesis must have been imcomplete if without
enthusiastical help and encouragement of Prof. Arndt von Haeseler from
Center for Integrative Bioinformatics Vienna-CIBIV, Austria. It’s very
kind of you to offer me an opportunity to do the research on
Bioinformatics field of study.
Thanks to all members of the Data Mining research group for the seminar
topics held periodically from which I’ve gotten lot of meaningfull
knowledge. Anyway, thanks to the Information Systems Department,
COLTECH, VNUH for it’s friendly and suitable to doing the scientific
research environment. This work was supported in part by the National
Project "Developing content filter systems to support management and
implementation public security - ensure policy" and the MoST-203906
Project "Information Extraction Models for discovering entities and
semantic relations from Vietnamese Web pages".
Finally, I would like to thank Mr. Le Si Vinh and Mr. Bui Quang Minh
for their continued help during the time of implementing this thesis.
FOREWORD .................................................................................................1
CHAPTER 1...................................................................................................3
INTRODUCTION TO GENE EXPRESSION DATA...............................3
1.1. GENE EXPRESSION ................................................................................3
1.2. DNA MICROARRAY EXPERIMENTS .......................................................5
1.3. HIGH-THROUGHPUT MICROARRAY TECHNOLOGY .............................8
1.4. MICROARRAY DATA ANALYSIS ...........................................................12
1.4.1. Pre-processing step on raw data.................................................14
1.4.1.1 Processing missing values..............................................................14
1.4.1.2. Data transformation and Discretization ........................................15
1.4.1.3. Data Reduction...............................................................................16
1.4.1.4. Normalization.................................................................................17
1.4.2. Data analysis tasks ......................................................................18
1.4.2.1. Classification on gene expression data.........................................18
1.4.2.2. Feature selection ...........................................................................21
1.4.2.3. Performance assessment ...............................................................21
1.5. RESEARCH TOPICS ON CDNA MICROARRAY DATA ............................22
CHAPTER 2.................................................................................................25
GRAPH BASED RANKING ALGORITHMS WITH GENE
NETWORKS................................................................................................25
2.1. GRAPH BASED RANKING ALGORITHMS .............................................25
2.2. INTRODUCTION TO GENE NETWORK..................................................29
2.2.1. The Boolean Network Model .......................................................30
2.2.2. Probabilistic Boolean Networks...................................................31
2.2.3. Bayesian Networks........................................................................31
2.2.4. Additive regulation models...........................................................33
CHAPTER 3.................................................................................................35
REAL DATA ANALYSIS AND DISCUSSION .......................................35
3.1. THE PROPOSED SCHEME FOR GENE SELECTION IN SAMPLE
CLASSIFYING PROBLEM..............................................................................35
3.2. DEVELOPING ENVIRONMENT..............................................................37
3.3. ANALYSIS RESULTS .............................................................................38
REFERENCES ............................................................................................43