Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

The Automotive Body
Nội dung xem thử
Mô tả chi tiết
The Automotive Body
Mechanical Engineering Series
Frederick F. Ling
Editor-in-Chief
The Mechanical Engineering Series features graduate texts and research monographs to
address the need for information in contemporary mechanical engineering, including
areas of concentration of applied mechanics, biomechanics, computational mechanics,
dynamical systems and control, energetics, mechanics of materials, processing, production systems, thermal science, and tribology.
Advisory Board/Series Editors
Applied Mechanics F.A. Leckie
University of California,
Santa Barbara
D. Gross
Technical University of Darmstadt
Biomechanics V.C. Mow
Columbia University
Computational Mechanics H.T. Yang
University of California,
Santa Barbara
Dynamic Systems and
Control/Mechatronics
D. Bryant
University of Texas at Austin
Energetics J.R.Welty
University of Oregon, Eugene
Mechanics of Materials I. Finnie
University of California, Berkeley
Processing K.K. Wang
Cornell University
Production Systems G.-A. Klutke
Texas A&M University
Thermal Science A.E. Bergles
Rensselaer Polytechnic Institute
Tribology W.O. Winer
Georgia Institute of Technology
For other titles published in this series, go to
http://www.springer.com/1161
Lorenzo Morello • Lorenzo Rosti Rossini •
Giuseppe Pia • Andrea Tonoli
TheAutomotiveBody
Volume II: System Design
ABC
Lorenzo Morello
Via Bey 5B
10090 Villarbasse
Italy
E-mail: [email protected]
Lorenzo Rosti Rossini
via Canova 9
20145 Milan
Italy
E-mail: [email protected]
Giuseppe Pia
via Filadelfia 237/8 B
10137 Torino
Italy
E-mail: [email protected]
Andrea Tonoli
via Oronte Nota 55
10051 Avigliana (TO)
Italy
E-mail: [email protected]
ISSN 0941-5122
ISBN 978-94-007-0515-9 e-ISBN 978-94-007-0516-6
DOI 10.1007/978-94-007-0516-6
Springer Dordrecht Heidelberg London New York
The accuracy and completeness of information provided in this book are not guaranteed
to produce any particular results. Therefore, the Authors and the Publisher will not be
liable for any direct or indirect loss or damages incurred from any use of the information
contained in the book.
c Springer Science + Business Media B.V. 2011
No part of this work may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any
material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work.
Cover design: eStudio Calamar S.L.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Contents
7 Introduction to Volume II .................................. 1
8 Functions and Specifications ................................ 3
8.1 Transportation Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8.1.1 Traffic Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8.1.2 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.1.3 Operating Fleet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.1.4 Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.1.5 Social Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Vehicle Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2.2 Functions Perceived by Customers . . . . . . . . . . . . . . . . . . . 39
8.2.3 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.2.4 Body System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.3 Requirements Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3.1 Translation of Subjective Judgments into Measurable
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3.2 Euro NCAP Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3.3 Insurance Companies Rating . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3.4 Aging Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.4 Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4.1 The Vehicle in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.4.2 Body Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4.3 Artificial External Lighting . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4.4 External Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9 Ergonomics and Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.1 Hints on Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.1.1 Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1.2 Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
VI Contents
9.1.3 Effects of the Vibrations on the Comfort . . . . . . . . . . . . . 133
9.2 Manikins for Interior Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2.1 Hints about Anthropometry . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2.2 Two-Dimensional Manikins . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.2.3 Head Contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.4 Three-Dimensional Manikins . . . . . . . . . . . . . . . . . . . . . . . . 145
9.2.5 SAE Quotation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.3 Hints of Occupants Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.3.1 Basic Postures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.3.2 Positions Adopted in Automotive Applications . . . . . . . . 151
9.3.3 Experimental Tools to Evaluate the Postural
Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.4 Pedals Functionality and Positioning . . . . . . . . . . . . . . . . . . . . . . . . 155
9.4.1 Wheel Arch Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.4.2 Pedals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.5 Interior Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
9.5.1 Front Row - Driver’s Position . . . . . . . . . . . . . . . . . . . . . . . 160
9.5.2 Steering Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5.3 Seat and Steering Wheel Adjustment . . . . . . . . . . . . . . . . 165
9.5.4 Rear Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.6 Seat Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.6.1 Static Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.6.2 Comfort under Dynamic Loads . . . . . . . . . . . . . . . . . . . . . . 171
9.7 Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.7.1 Getting in and Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
9.7.2 Dimensional Parameters to Define the Apertures . . . . . . 176
9.8 Commands Reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.9 Loading and Unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.10 Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.10.1 Optical Properties of Glass Plates for Vehicle
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.10.2 Eyellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.10.3 Direct Field of View and Binocular Obstruction . . . . . . . 193
9.10.4 Indirect Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10 Climatic Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.1 Physiology Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
10.1.1 Body Temperature Control . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.1.2 Thermal Comfort Condition . . . . . . . . . . . . . . . . . . . . . . . . 204
10.1.3 Thermal Comfort Evaluation . . . . . . . . . . . . . . . . . . . . . . . 217
10.2 Passenger Compartment Energy Balance . . . . . . . . . . . . . . . . . . . . 221
10.2.1 Exchanged Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.2.2 Radiated Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.2.3 Passengers Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.2.4 Powertrain Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
10.2.5 Air Conditioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Contents VII
10.3 HEVAC System Design and Testing. . . . . . . . . . . . . . . . . . . . . . . . . 226
10.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
10.3.2 Cooling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.3.3 Heating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.3.4 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.3.5 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
11 Noise, Vibration, Harshness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.1 Sensitivity to Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.2 Sources of Noise and Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
11.2.1 Road Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
11.2.2 Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11.2.3 Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.2.4 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
11.2.5 Brakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.2.6 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.3 Dynamic Behavior of the Car Body and Modal Analysis . . . . . . . 284
11.3.1 Dynamic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
11.3.2 Free Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.3.3 Modal Coordinates Transformation . . . . . . . . . . . . . . . . . . 292
11.3.4 Mode Shapes of a Car Body . . . . . . . . . . . . . . . . . . . . . . . . 295
11.3.5 Forced Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
11.3.6 Response to a Random Excitation . . . . . . . . . . . . . . . . . . . 299
11.3.7 Viscous and Structural Damping . . . . . . . . . . . . . . . . . . . . 300
11.3.8 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
11.3.9 Cavity Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.3.10 Radiation from the Panels . . . . . . . . . . . . . . . . . . . . . . . . . . 316
11.4 Engine Suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
11.4.1 Engine Suspension Mounts . . . . . . . . . . . . . . . . . . . . . . . . . 320
11.4.2 Role of the Damping in Engine Suspensions. . . . . . . . . . . 321
11.4.3 Engine Suspension Architectures . . . . . . . . . . . . . . . . . . . . 330
11.4.4 Location of the Attachment Points to the Car Body
Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
11.5 Acoustic Transmission and Insulation . . . . . . . . . . . . . . . . . . . . . . . 337
11.5.1 Transmission Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
11.5.2 Sound Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.5.3 Sound Absorbing Materials . . . . . . . . . . . . . . . . . . . . . . . . . 350
11.5.4 Measurement of the Sound Absorption Coefficient . . . . . 360
11.5.5 Sound Absorption Treatments in Car Body
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
12 Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
12.1 Internal and External Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
12.1.1 Parking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
12.1.2 Limit Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
12.1.3 Road Unevenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
VIII Contents
12.1.4 Internal Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
12.1.5 Safety Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
12.2 Behavior of Thin Wall Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
12.2.1 Hypothesis and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 379
12.2.2 Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
12.2.3 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
12.2.4 Shear and Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
12.2.5 Buckling of Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
12.2.6 Buckling of Flat Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
12.2.7 Buckling of Composite Shapes . . . . . . . . . . . . . . . . . . . . . . 405
12.2.8 Buckling of Thin Wall Cylinders . . . . . . . . . . . . . . . . . . . . 408
12.2.9 Shear Buckling of Flat Panels . . . . . . . . . . . . . . . . . . . . . . . 410
12.3 Simplified Structural Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
12.3.1 Box Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
12.3.2 Underbody Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.3.3 Central Portion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
12.3.4 Functional Requirements for a Structural Body . . . . . . . 436
12.4 Numerical Models for Structural Analysis . . . . . . . . . . . . . . . . . . . 439
12.4.1 Shape Functions and Degrees of Freedom . . . . . . . . . . . . . 440
12.4.2 Equations of the Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
12.4.3 Finite Elements Models of Car Body Structures . . . . . . . 446
12.5 Measurement of the Car Body Stiffness. . . . . . . . . . . . . . . . . . . . . . 455
12.5.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.5.2 Vehicle Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.5.3 Bending Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
12.5.4 Torsional Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
12.5.5 Stiffness Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
13 Passive Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
13.1 Biomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
13.1.1 Biomechanical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
13.1.2 Injury Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
13.2 Simplified Models for Crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
13.2.1 Impulsive Model: With Full Overlap . . . . . . . . . . . . . . . . . 485
13.2.2 Role of the Restraint System. . . . . . . . . . . . . . . . . . . . . . . . 490
13.2.3 Speed-Time Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
13.3 Introduction on Impact Energy Absorbers . . . . . . . . . . . . . . . . . . . 497
13.3.1 Beams with Rectangular Cross Section . . . . . . . . . . . . . . . 499
13.3.2 Stable Crush: Mechanics of the Deformation . . . . . . . . . . 503
13.3.3 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
13.3.4 Global Compression Instability of Beams . . . . . . . . . . . . . 514
13.3.5 Bending Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
13.3.6 Collapse of Tubes with Circular Cross Section . . . . . . . . . 519
13.3.7 Axial Collapse of Circular Tubes . . . . . . . . . . . . . . . . . . . . 522
13.3.8 Effects of the Strain Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 527
13.3.9 Structural Foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
Contents IX
13.4 Front Structure Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
13.4.1 Target Acceleration Profiles. . . . . . . . . . . . . . . . . . . . . . . . . 533
13.5 Testing on Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
13.5.1 Dummies for Impact Test . . . . . . . . . . . . . . . . . . . . . . . . . . 539
13.6 Impact Tests Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
13.6.1 Equipment for Tests on a Whole Vehicle . . . . . . . . . . . . . 547
13.6.2 Component Test: HYGE Slide . . . . . . . . . . . . . . . . . . . . . . 550
13.7 Non Linear FEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
13.7.1 Solution of Non Linear Static Problems . . . . . . . . . . . . . . 552
13.7.2 Characteristics of Non Linear Dynamic Problems . . . . . . 555
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
7
Introduction to Volume II
The purpose of Volume II is to explain the links which exist between satisfying
the needs of the customer (either driver or passenger) and the specifications for
vehicle design, and between the specifications for vehicle system and components.
For this study a complete vehicle system must be considered, including, according to the nature of functions that will be discussed, more component classes
than considered in Volume I, and, sometimes, also part of the chassis and the
powertrain.
Since the first element of the chain of elements to be taken into consideration
is the human being, it is appropriate to consider physiology issues to some extent
in order to better understand the needs to be satisfied and the control parameters
to be evaluated.
The Chapter 8, the first in this Volume, is dedicated to body requirements and
functions. An introductory framework regarding statistic vehicle usage in Europe
is provided, followed by an analysis of vehicle functions, with particular reference to those functions that are more conditioned by body design: Ergonomics
and internal space utilization, thermal comfort, acoustic and vibration comfort,
structural integrity and passive safety.
Although specific aspects of marketing are beyond the scope of this text, some
examples are provided as a reference regarding the procedures applied to define
technical quantitative specifications on the basis of customer’s needs, usually
rated qualitatively. Bearing in mind their correlation with vehicle system specifications, the European regulations relevant to the car body and its components
are also explained, with particular reference to vehicle active and passive safety.
L. Morello et al.: The Automotive Body, Vol. 2: System Design, MES, pp. 1–2.
springerlink.com c Springer Science + Business Media B.V. 2011
2 7 Introduction to Volume II
The following chapter, dedicated to Ergonomics and packaging, describes the
most important issues to be considered in terms of occupants well-being inside
passenger compartment: seating comfort, direct and indirect visibility, the space
necessary to install mechanical components into the vehicle will be particularly
considered. The analysis of these issues allows to the primary design criteria of
internal space and the lay-out of seats and controls to be identified.
Chapter 10 addresses the topic of thermal comfort and includes an introduction to the human body physiology thermal comfort conditions and the main
parameters of relevance; the metabolic activity is also examined as function of
ambient conditions and the influence on comfort, taking into account the thermal
exchange. A thermal balance can therefore be evaluated of relevance with respect
to the design of the air conditioning system. After summarizing the main components of the HVAC system, already described in Volume I, the chapter concludes
with design and testing criteria description.
Starting from human sensitivity to noise and vibration, the main issues influencing comfort are considered in the next chapter. The main sources of dynamic
excitation are examined, including those which generate noise and vibration inside the vehicle including tires and powertrain, and outside the vehicle such as
road shocks and aerodynamic noise. The main parameters needed to describe the
dynamic behavior of the body are also introduced, together with the technical
solutions proposed to reduce the transmission of excitations to the body.
The main objective of the following chapter concerning structural integrity
is to explain the role of the body primary components and the baseline criteria
for their design. Quasi-static reference loads acting on the body during normal
service life are introduced. Some additional concepts, appropriate to understand
the effect of bending and torsion deformation on a car body, are also discussed in
terms of the contribution of the framework. The chapter concludes by describing
the options available and the critical issues to be considered when modeling a
car body using the finite elements technique.
The last chapter is dedicated to the subject of passive safety, opening with
an introduction to biomechanics and the criteria used to evaluate the severity
of injuries consequent to an accident. This very broad topic is limited here to
empirical relationships and the acceptability limits proposed by governments regulations to limit the severity of injuries during accidents. The need to guarantee
a high level of protection to mitigate the consequence of accidents is a major
issue that directly conditions body design. The objective of the explanation included is to describe the most common solutions and design criteria in use to
protect car occupants during an accident. Simplified mathematical models are
introduced to describe restraint systems functions and the structural behavior
of deformable parts of the body involved in the crash. The high reliability of
results obtained from finite elements method, also for the prediction of the large
displacements expected as a result of a crash, justifies the outline included of the
computer codes applied to model plastic behavior.
8
Functions and Specifications
Knowledge of how the vehicle is constructed and manufactured and of how its
components should be designed, which are the subjects of Volume I, and of how
they should be integrated into the system, the scope of Volume II, does not
complete the entire picture with regard to how to conceive and develop a car
which will meet with commercial success since in practice many of the functions
are not directly related to purely technical aspects.
Such knowledge is essential for obtaining a set of assigned targets for the
product. However the vehicle is a mature product meaning that fundamental
characteristics are almost always standardized and technical excellence is now
considered to be a ‘must’ than a topic for advertisement. Without underestimating the fundamental importance of this knowledge and the resulting product
targets, it is appropriate to recognize that the success of a product is mostly
dependent on how well these targets are able to interpret the customer’s needs.
The combination of vehicle technical objectives and an overall description of
its architecture comprise what is universally known, with particular reference to
the case of the car, as product concept or conceptual design.
The concept is the starting point for the development of a car and its production tools. It can be expressed with a sketch or by using a three dimensional
simplified model, suitable for illustrating its appearance and its main functions.
Its aesthetic appearance must also be addressed because it must be coherent
with the expectations of potential customers. This visual documentation must
be accompanied by an exhaustive quantitative definition of the technical and
economical characteristics which demonstrate congruence and feasibility.
Concept creation is a truly creative process, where its leadership is usually
assigned to a marketing specialist, but where meeting its target successfully must
L. Morello et al.: The Automotive Body, Vol. 2: System Design, MES, pp. 3–125.
springerlink.com c Springer Science + Business Media B.V. 2011
4 8 Functions and Specifications
include contributions from every discipline involved in product development. In
fact, the characteristics of the concept must be derived fromagood understanding of customer needs and of how much the customer is willing to spend for their
satisfaction; even if it is true that this knowledge is the speciality of marketing experts, an innovative contribution essential for success is required from all
involved who are competent regarding relevant product functions.
Definingaconcept means, therefore:
• to describe a product in terms of technical functions and specifications;
• to determine the product configuration and to choose its main components;
• to identify character, personality, feelings and other traits this new product
will offer to the customer.
Each car manufacturer emphasizes different aspects of the product concept
and determines, consequently, its characteristics and potential success from the
outset of the development process. The most obvious aspects may be defined, for
example, according to the categories of convenience, luxury and sportsmanship.
The central issue of the concept definition process is to obtain involvement
throughout the company; the concept is partly driven by objective and measurable facts, the job of technicians, and partly by insight that will be contributed
by marketing experts and others involved with sufficient experience to contribute
creatively.
Those in charge of detailed product design, component specification, styling,
production means development, sales and service must also be involved since
their expertise will condition customer satisfaction.
Nevertheless, strong leadership by marketing experts is necessary: While ignoring the any of the operations listed above during the concept development
can cause significant inconvenience, it is also true that excessive involvement of
many can cause premature conflicts and compromises, leading to product characteristics which may be ’flat’ or even trivial.
A new vehicle cannot be simply the extrapolation of a previous perception of
customer needs, as assessed by the popularity of existing products; very often,
successful cars have been born out of a response to needs that were unexpressed
until the time of product launch.
To underline this point, it is worthwhile recalling the first launch of sport utility vehicles, coupe-cabriolets, minivans and a series of other product innovations
that met with commercial success which initially may have been unexpected by
other vehicle manufacturers.
When defining a new concept it is important to proceed according to the
following steps:
• Focus on customer needs;
• Identify latent or hidden needs, in addition to those demonstrated by existing products;