Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Textbook of machiens hydraulic
Nội dung xem thử
Mô tả chi tiết
A
CONTENTS
CHAPTER (I) BASIC THEORY
Historical Review . . . . . . . . . . . . . 2
1.1 General Introduction . . . . . . . . . . . . 4
1.2 Velocity Diagram . . . . . . . . . . . . . . 5
1.3 Momentum Transfer Principles . . . . . . . . 6
1.4 Energy Equation . . . . . . . . . . . . . . 9
1.5 Theories of Turbomachines . . . . . . . . . .
Euler Theory (Elementary)
Modern Theory
Necessity for flow unsteadiness
1.5.4 Approximate calculation of deviation
after Stodola
11
11
14
18
19
1.6 Some Practical Considerations (Actual
Machine Design) . . . . . . . . . . . . . .
Friction
Disk Friction
Leakage
Pre-rotation of the fluid
20
20
20
21
21
1.7 Coefficients and Efficiencies . . . . . . . . .
Circulatory Flow Coefficient
Manometric Efficiency
Mechanical Efficiency
Volumetric Efficiency
Hydraulic Efficiency (Turbine)
22
22
22
23
23
23
CHAPTER (II) DIMENSIONAL ANALYSIS AND
SIMILITUDE OF TURBOMACHINES
2.1 Introduction . . . . . . . . . . . . . . . . 24
2.2 Dimensional Analysis . . . . . . . . . . . . 24
2.3 Hydraulic Similarity . . . . . . . . . . . . . 25
2.4 Application of Dimensional Analysis on
B
Turbomachines . . . . . . . . . . . . . . .
2.4.1 Discussion
2.4.2 Performance Curves
26
27
28
2.5 Scale Effect . . . . . . . . . . . . . . . .
Reynolds Number effect
Scale effects in Hydraulic Machines
Scale effects in compressible machines
29
29
30
35
2.6 Affinity Laws . . . . . . . . . . . . . . . . 39
2.7 Specific Speed . . . . . . . . . . . . . . .
Pumps
Compressors and Blowers
Hydraulic Turbines
40
41
43
43
2.8 Pressure and Flow Coefficients . . . . . . . . 44
2.9 Specific Diameter . . . . . . . . . . . . . . 44
CHAPTER (III) CASCADE MECHANICS
"TWO-DIMENSIONAL APPROACH"
3.1 Introduction . . . . . . . . . . . . . . . . 47
3.2 Cascade Nomenclature . . . . . . . . . . . . 47
3.3 Analysis of Cascade Forces . . . . . . . . . . 49
3.4 Lift and Drag . . . . . . . . . . . . . . . . 51
3.5 Cascades in Motion . . . . . . . . . . . . . 54
3.6 Cascade Performance . . . . . . . . . . . .
General Approach
Fluid Deviation
Off-Design Performance
Turbine Cascade Performance
55
55
57
59
59
3.7 Mach Number Effect . . . . . . . . . . . . 60
3.8 Ideal Characteristics . . . . . . . . . . . .
Zero Lift Angle
Impulse Flow Angle
62
62
63
3.9 The Head-Capacity Curve of Straight Cascade . 64
3.10 Radial Cascade . . . . . . . . . . . . . . 65
3.11 Cascade Characteristics Analysis . . . . . . . 67
3.12 Singularity Method . . . . . . . . . . . .
Method of Solution for Single Airfoil
Conformal Transformation Method
67
69
71
C
CHAPTER (IV) INCOMPRESSIBLE FLOW
TURBOMACHINES ( PUMPS )
4.1 Introduction . . . . . . . . . . . . . . . . . 78
4.2 Centrifugal Pumps (Radial) . . . . . . . . . .
4.2.1 General Considerations
a. Volute type pump
b. Diffuser type pump
4.2.2 Effect of Impeller Exit Angle β2
4.2.3 Efficiencies and Coefficients of Centrifugal Pumps
i. Efficiencies
ii. Coefficients
iii. Affinity Laws
iv. Specific Speed
4.2.4 Centrifugal Pump Actual Performance
4.2.4.1 Actual Head Capacity Curve
4.2.4.2 Brake Horsepower and Efficiency Curves
4.2.4.3 Analysis of Characteristic Curves
4.2.4.4 Influence of Physical
Properties on
Performance
i. Viscosity Effect
ii. Density
4.2.5 Some Design Features of Centrifugal Pumps
4.2.5.1 Leakage Calculation
4.2.5.2 Disk Friction
4.2.5.3 Diffuser Losses
4.2.5.4 Mechanical Seals
a. Single Seals
b. Tandem Seals
c. Double Seals
4.2.5.5 Bearing Losses
4.2.5.6 Axial Thrust
4.2.5.7 Impeller Design
a. Impeller Inlet Dimensions and
Angles
b. Impeller Exit Dimensions and
Angles
78
78
79
79
80
82
82
83
83
83
83
83
85
86
87
87
88
88
88
89
89
90
90
93
95
96
96
99
100
101
105
105
106
D
4.2.6 Centrifugal Pump Types
4.2.6.1 Fire Pump
4.2.6.2 Dredge Pumps
4.2.6.3 Slurry Pumps
4.2.6.4 Deep Well Pumps
4.2.6.5 Circulating Pumps
4.2.6.6 Boiler Feed Pumps
4.2.6.7 Pumping Liquid/Gas Mixtures
106
106
107
107
108
4.3 Axial Pumps (Propeller Pumps) . . . . . . . .
Degree of Reaction
Pressure and Flow Coefficients
Study of Flow Inside the Rotor (Radial
Equilibrium)
Performance of Axial Flow Propeller Pumps
109
110
110
112
113
p Selection and Applications . . . . . . .
Pumps in Parallel
Pumps in Series
Economic Considerations
Design of the Intake Chamber of Vertical Pumps
4.4.4.1 General
4.4.4.2 Open Intake Chambers
4.4.4.3 Covered Intake Chambers
4.4.4.4 Inlet Elbows
Pressure Surges (Water Hammer) in Piping
Systems
Pump Installation
Centrifugal Pump Trouble Shooting
116
117
117
118
118
118
119
122
123
124
126
134
CHAPTER (V) INCOMPRESSIBLE FLOW
TURBINES ( Hydraulic Turbines )
General Introduction . . . . . . . . . . . . 142
5.1 Impulse Turbines (Pelton Wheel) . . . . . . .
General Considerations
142
142
5.2 Reaction Turbines . . . . . . . . . . . . .
5.2.1 General
5.2.2 Francis Turbines (Radial and
Mixed)
5.2.2.1 General
149
149
150
150
152
E
5.2.2.2 Power,
Efficiency and
Coefficients
5.2.2.3 Head
Delivered by
Turbine and
Draft Tube
5.2.2.4 Types of
Draft Tube
5.2.2.5 Net Head
5.2.2.6 Cavitation in
Turbines
5.2.2.7 Power and
Speed
Regulation
5.2.2.8 Francis
Turbine
Performance
5.2.3 Axial Flow Reaction Turbines
a. Propeller Turbine
b. Kaplan Turbine
5.2.4 Some Design Characteristics for Hydraulic
Turbines
153
156
157
157
160
161
162
163
163
164
5.3 Some Turbines Installations . . . . . . . . .
a. Impulse Turbine
b. Francis Turbine
c. Axial Turbine
165
165
166
173
5.4 Fluid Coupling and Torque Converters . . . .
5.4.1 Fluid Coupling
5.4.2 Torque Converter
173
174
176
5.5 Pump-Turbine, Power Storage System . . . . 178
CHAPTER (VI) COMPRESSIBLE FLOW
TURBOMACHINES
( Thermodynamic Principles )
6.1 Equation of state . . . . . . . . . . . . . . 189
6.2 Specific Heat . . . . . . . . . . . . . . . 190
6.3 Enthalpy . . . . . . . . . . . . . . . . . 190
F
6.4 Entropy . . . . . . . . . . . . . . . . . 191
6.5 Work . . . . . . . . . . . . . . . . . .
6.5.1 For a constant volume process
6.5.2 For a constant pressure process
6.5.3 For a constant temperature
process
6.5.4 For an adiabatic process
6.5.5 For polytropic process
191
192
192
193
193
193
6.6 First Law of Thermodynamics . . . . . . . . 194
6.7 Second Law of Thermodynamics . . . . . . . 194
6.8 Compression of Gases . . . . . . . . . . .
6.8.1 Adiabatic Compression
6.8.2 Isothermal Compression
6.8.3 Polytropic Compression
195
195
196
197
6.9 Plane Compressible Flow . . . . . . . . . . 198
6.10 Gothert's Rule . . . . . . . . . . . . . . 199
6.11 Prandtl-Glauert Rule . . . . . . . . . . . 201
CHAPTER (VII) FANS, BLOWERS, and
TURBO-COMPRESSORS
7.1 General . . . . . . . . . . . . . . . . .
7.1.1 Fans
7.1.2 Blowers
7.1.3 Turbo-compressors
202
202
203
203
7.2 Head and Power . . . . . . . . . . . . . . 204
7.3 Coefficients and Specific Speed . . . . . . .
7.3.1 Pressure Coefficient φ'
7.3.2 Slip Factor
7.3.3 Standard Air
205
205
205
206
7.4 Performance Characteristics . . . . . . . . 206
7.5 Mach Number Consideration . . . . . . . . 211
7.6 Pre-Whirl . . . . . . . . . . . . . . . . 211
7.7 Surging . . . . . . . . . . . . . . . . . 212
7.8 Radial Type Impeller Design . . . . . . . . 212
G
CHAPTER (VIII) VOLUMETRIC MACHINES
8.1 Reciprocating Pumps . . . . . . . . . . . .
8.1.1 Piston Pumps
8.1.2 Instantaneous Rate of Flow
8.1.3 Diaphragm Pumps
8.1.4 Reciprocating Pump Trouble
Shooting
218
218
219
222
224
8.2 Rotary Pumps . . . . . . . . . . . . . . .
8.2.1 Rotating Cylinder Pump
8.2.2 Gear Wheel Pump
8.2.3 Rotary Pump Trouble Shooting
225
225
226
227
8.3 Performance of Positive Pumps . . . . . . . 228
8.4 Inertia Pressure in Delivery and Suction Pipes . 229
APPENDIX “I” Pressure Recovery Devices
1 General . . . . . . . . . . . . . . . . . .
1.1 Calculation of Loss Coefficient
231
233
2 Diffuser Types . . . . . . . . . . . . . . . .
2.1 Vaneless Diffuser
2.2 Vaned Diffuser
2.3 Volute Type Diffuser
2.3.1 Parallel Walls
2.3.2 Tapering Side Walls
2.3.3 Rectangular Cross Section
236
237
239
241
241
242
244
References “Appendix I” . . . . . . . . . . . 245
APPENDIX “II” Theory of Cavitation in Centrifugal
Pumps
1 Introduction . . . . . . . . . . . . . . . . 246
2 Inception of Cavitation . . . . . . . . . . . . 248
3 Signs of Cavitation . . . . . . . . . . . . . 250
H
3.1 Noise and Vibration
3.2 Drop in Head-Capacity and Efficiency
Curves
3.3 Impeller Vane Pitting and Erosion
250
250
253
4 Mechanisms of Damage . . . . . . . . . . . 253
5 Thermodynamic Effects on Pump Cavitation . . 257
6 Net Positive Suction Head . . . . . . . . . . 260
7 Net Positive Suction Head Test . . . . . . . . 262
8 Thoma’s Cavitation Constant . . . . . . . . 263
9 Suction Specific Speed . . . . . . . . . . . . 264
10 Some Discussions Concerning the NPSH . . . 266
11 Cavitation Noise in Centrifugal Pumps . . . . 268
12 Cavitation Detection by Digital Acoustic
Emission Analysis . . . . . . . . . . . . . 286
13 How to Prevent Cavitation . . . . . . . . . 288
References “Appendix II” . . . . . . . . . 290
APPENDIX “III” Solved Examples and Problems
Chapter I . . . . . . . . . . . . . . . . . 292
Solved Examples
Problems
294
301
Chapter II . . . . . . . . . . . . . . . . . 303
Solved Examples
Problems
305
311
Chapter III . . . . . . . . . . . . . . . . 312
Solved Examples
Problems
314
319
Chapter IV . . . . . . . . . . . . . . . . 320
Solved Examples
Problems
324
333
Chapter V . . . . . . . . . . . . . . . . 336
Solved Examples
Problems
338
347
Chapter VII . . . . . . . . . . . . . . . . 349
Solved Examples
Problems
350
353
Chapter VIII . . . . . . . . . . . . . . . 354
I
Solved Examples
Problems
356
359
APPENDIX “IV” Tables and Charts
Tables and Charts . . . . . . . . . . . . . . . 360
General References . . . . . . . . . . . . . 366
1
Types and shapes of turbomachines (adopted from Sayers)
2
CHAPTER (I)
BASIC THEORY
HISTORICAL REVIEW
Turbomachines by definition are those class of machines in which
occurs a continuous energy transfer between a rigid body (Rotor) and a
deformable media (fluid). A large number of machinery is characterized
by this energy transfer process.
Historically, the first turbomachines can be traced back to hero of
Alexandria who lived since 2000 years ago, (Fig. A.1). The machine was
simply consists of a closed spherical vessel. The steam leaves the vessel
through two pipes facing tangentially at the vessel's periphery. The vessel
is then driven by the reaction of the steam jets.
The Romans introduced paddle-type water wheels, pure "impulse"
wheels in around 70 BC for grinding grain, it seems that they were the
true initiators, because Chinese writings set the first use of water wheels
there at several decades later (26). In the succeeding centuries, water
wheels of impulse type and windmills have been used.
In the 17th century Giovanni de Branca has suggested the idea of
impulse steam turbine, (Fig. A.2).
3
Fig. A.1 Hero’s rotating sphere
of 120 B.C.
Fig. A.2 Giovanni de Branca's
turbine of 1629
Through the eighteenth century, the mankind has acquired a
suitable knowledge in hydrodynamics and thermodynamics to permit a
real movement toward modern turbomachinery. In this time, the Swiss
mathematician Leonard Euler (1707-1783), has published his application
of Newton's law to turbomachinery which is known now as Euler's
equation, since that time the development of turbomachinery has not
ceased.
Now, the utilization of turbomachines is in all engineering applications. It
is difficult to find any engineering construction without having a
turbomachine element. The wide application of turbomachines has
justified its important space in engineering curriculum.
1.1 General Introduction:
Every common turbomachine contains a rotor upon which blades
are mounted, only the detailed physical arrangements differ. Fluid flows
through the rotor from an entrance to an exit submit a change in
momentum during the process because of the torque exerted on or by
rotor blades.
4
Fig. A.3 Modern turbomachinery rotor
Throughout this text, the emphasize has put on the practical aspects
of the machines without going deep inside the mathematical formulation.
Some important applications are treated separately as; cavitation
5
phenomena, pressure recovery devices and maintenance of
turbomachines.
The turbomachines can be classified by the energy transfer
principle, Figure 1.1:
1. Turbines, energy transfers from the fluid to the rotor.
2. Pumps, energy transfers from the wheel to the
fluid.
The rotors also can be classified by the direction of flow in the wheel:
- Radial Wheel,
- Axial Wheel,
- Mixed Wheel.
Fig. 1.1 Flow direction in turbines and pumps
Hydraulic Turbomachinery Classification
Energy Conversion
Principle Impulse Reaction
Energy transfer direction + ve + ve - ve + ve - ve
Flow Direction Radial Radial Axial Axial
Turbomachine Pelton
Wheel
Francis
Turbine
Centrifugal
Pump
Kaplan
Turbine
Propeller
Pump
+ ve means energy transfer from fluid to wheel.
- ve means energy transfer from wheel to fluid.
1.2 Velocity Diagram: